Advancements in 3D Printing and Additive Manufacturing for Orthopedic Applications

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetic Design, Constructions and Devices".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 793

Special Issue Editor


E-Mail Website
Guest Editor
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
Interests: bioengineering; tissue engineering; 3D printing; bone implant; mechanical engineering; additive manufacturing; finite element analysis; computational fluid dynamics; numerical simulation; 3D CAD modelling

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to our Special Issue on “Advancements in 3D Printing and Additive Manufacturing for Orthopedic Applications” of Biomimetics. This Special Issue aims to explore the latest developments, innovations, and applications of 3D printing and additive manufacturing technologies in the field of orthopedics.

Introduction: The field of orthopedic applications has been significantly transformed by the advent of 3D printing and additive manufacturing. These technologies have enabled the creation of customized implants, prosthetics, and surgical tools with unprecedented precision and functionality. The integration of biomimetic principles has further enhanced the performance and biocompatibility of these medical devices.

Aim: This Special Issue aims to gather high-quality research articles and reviews that address the advancements in 3D printing and additive manufacturing technologies for orthopedic applications. The scope of this Special Issue includes, but is not limited to, the development of new materials, design optimization, clinical applications, and the integration of digital and computational tools.

Themes: We welcome submissions that cover a broad range of topics including, but not limited to, the following:

  • Customization of orthopedic implants and prosthetics;
  • Biomimetic design principles in 3D printing;
  • Novel materials for additive manufacturing in orthopedics;
  • Advances in surgical tools and guides;
  • Clinical case studies and applications;
  • Computational modeling and simulation for design and fabrication.

We look forward to receiving your valuable contributions to this Special Issue.

Dr. Francis T. Omigbodun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • additive manufacturing
  • orthopedic applications
  • biomimetic design
  • customized implants
  • prosthetics
  • surgical tools
  • novel materials
  • clinical applications
  • computational modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5284 KiB  
Article
Leveraging Machine Learning for Optimized Mechanical Properties and 3D Printing of PLA/cHAP for Bone Implant
by Francis T. Omigbodun, Norman Osa-Uwagboe, Amadi Gabriel Udu and Bankole I. Oladapo
Biomimetics 2024, 9(10), 587; https://doi.org/10.3390/biomimetics9100587 - 27 Sep 2024
Viewed by 632
Abstract
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds’ mechanical and thermal properties, making them suitable for load-bearing [...] Read more.
This study explores the fabrication and characterisation of 3D-printed polylactic acid (PLA) scaffolds reinforced with calcium hydroxyapatite (cHAP) for bone tissue engineering applications. By varying the cHAP content, we aimed to enhance PLA scaffolds’ mechanical and thermal properties, making them suitable for load-bearing biomedical applications. The results indicate that increasing cHAP content improves the tensile and compressive strength of the scaffolds, although it also increases brittleness. Notably, incorporating cHAP at 7.5% and 10% significantly enhances thermal stability and mechanical performance, with properties comparable to or exceeding those of human cancellous bone. Furthermore, this study integrates machine learning techniques to predict the mechanical properties of these composites, employing algorithms such as XGBoost and AdaBoost. The models demonstrated high predictive accuracy, with R2 scores of 0.9173 and 0.8772 for compressive and tensile strength, respectively. These findings highlight the potential of using data-driven approaches to optimise material properties autonomously, offering significant implications for developing custom-tailored scaffolds in bone tissue engineering and regenerative medicine. The study underscores the promise of PLA/cHAP composites as viable candidates for advanced biomedical applications, particularly in creating patient-specific implants with improved mechanical and thermal characteristics. Full article
Show Figures

Figure 1

Back to TopTop