Superstripes Physics, 3rd Edition

A special issue of Condensed Matter (ISSN 2410-3896). This special issue belongs to the section "Quantum Materials".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 1510

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
Rome International Center for Materials Science Superstripes (RICMASS), Via dei Sabelli 119A, 00185 Roma, Italy
Interests: synchrotron radiation research; protein fluctuations; active sites of metalloproteins; origin of life; selected molecules in prebiotic world; quantum phenomena in complex matter; quantum confinement; superstripes in complex matter; lattice complexity in transition metal oxides; high Tc superconductors; valence fluctuation materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Physics, Columbia University, New York, NY 10027, USA
Interests: atomic, molecular, and optical physics; condensed matter physics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will publish selected papers from the Superstripes 2024 meeting due to take place June 24–29, 2024, in Ischia–Naples, Italy.

The Superstripes 2024 meeting continues a successful series of international meetings, which first began in Rome in 1996 following growing scientific interest in the emergence new phenomena related to complexity in quantum matter. The aim of the Superstripes 2024 meeting is to foster advances in top-level science and scientific culture, bringing together selected world leaders in the field of quantum complex matter science. You are invited to contribute an article or review paper for possible publication in our Special Issue. Submissions will be rapidly reviewed and published shortly, if accepted.

Prof. Dr. Antonio Bianconi
Prof. Dr. Yasutomo Uemura
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Condensed Matter is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quantum complex matter
  • symmetry and heterogeneity
  • multi-condensates
  • topological materials
  • superstripes
  • stripes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 846 KiB  
Article
Undamped Higgs Modes in Strongly Interacting Superconductors
by José Lorenzana and Götz Seibold
Condens. Matter 2024, 9(4), 38; https://doi.org/10.3390/condmat9040038 - 30 Sep 2024
Viewed by 294
Abstract
In superconductors, gauge U(1) symmetry is spontaneously broken. According to Goldstone’s theorem, this breaking of a continuous symmetry establishes the existence of the Bogoliubov phase mode while the gauge-invariant response also includes the amplitude fluctuations of the order parameter. The [...] Read more.
In superconductors, gauge U(1) symmetry is spontaneously broken. According to Goldstone’s theorem, this breaking of a continuous symmetry establishes the existence of the Bogoliubov phase mode while the gauge-invariant response also includes the amplitude fluctuations of the order parameter. The latter, which are also termed ‘Higgs’ modes in analogy with the standard model, appear at the energy of the spectral gap 2Δ, when the superconducting ground state is evaluated within the weak-coupling BCS theory, and, therefore, are damped. Previously, we have shown that, within the time-dependent Gutzwiller approximation (TDGA), Higgs modes appear inside the gap with a finite binding energy relative to the quasiparticle continuum. Here, we show that the binding energy of the Higgs mode becomes exponentially small in the weak-coupling limit converging to the BCS solution. On the other hand, well-defined undamped amplitude modes exist in strongly coupled superconductors when the interaction energy becomes of the order of the bandwidth. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

9 pages, 1098 KiB  
Article
Room-Temperature Superconductivity in 1D
by Carlo A. Trugenberger
Condens. Matter 2024, 9(3), 34; https://doi.org/10.3390/condmat9030034 - 8 Sep 2024
Viewed by 822
Abstract
We review the theoretical model underpinning the recently reported room-temperature, ambient-pressure superconductivity along line defects on the surface of highly oriented pyrolytic graphite. The main ingredients for this 1D room-temperature superconductivity are pairing by effective strain gauge fields, the formation of an effective [...] Read more.
We review the theoretical model underpinning the recently reported room-temperature, ambient-pressure superconductivity along line defects on the surface of highly oriented pyrolytic graphite. The main ingredients for this 1D room-temperature superconductivity are pairing by effective strain gauge fields, the formation of an effective Josephson junction array in its Bose metal state on the surface and the suppression of phase slips by dimensional embedding in an extremely well-conducting 3D bulk structure. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

Back to TopTop