Artificial Intelligence in Medical Diagnosis and Prognosis

Editor

Topical Collection Information

Dear Colleagues,

This is a collection of open access high-quality papers published by Editorial Board Members, or those who were invited by the Editorial Office. This Topical Collection aims to publish high-quality articles within the field of artificial intelligence in medical diagnosis and prognosis. The papers should be long research papers (or review papers) with full and detailed summaries of the author's own work performed so far. Please note that the selected full papers will still be subjected to thorough and rigorous peer review. All papers will be published on an ongoing basis.

Prof. Dr. Tim Duong
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • artificial intelligence
  • diagnosis
  • prognosis
  • biomedical imaging
  • radiology

Published Papers (3 papers)

2025

Jump to: 2024

21 pages, 1349 KB  
Article
Cytokine Profiles as Predictive Biomarkers of Disease Severity and Progression in Engineered Stone Silicosis: A Machine Learning Approach
by Daniel Sanchez-Morillo, Ana Martín-Carrillo, Blanca Priego-Torres, Iris Sopo-Lambea, Gema Jiménez-Gómez, Antonio León-Jiménez and Antonio Campos-Caro
Diagnostics 2025, 15(18), 2413; https://doi.org/10.3390/diagnostics15182413 - 22 Sep 2025
Viewed by 134
Abstract
Background/Objectives: Silicosis caused by dust from engineered stone (ES) exposure is an emerging occupational lung disease that severely impacts respiratory health. This study aimed to analyze the association between cytokine profiles and disease severity and progression in patients with engineered stone silicosis [...] Read more.
Background/Objectives: Silicosis caused by dust from engineered stone (ES) exposure is an emerging occupational lung disease that severely impacts respiratory health. This study aimed to analyze the association between cytokine profiles and disease severity and progression in patients with engineered stone silicosis (ESS) to assess their potential as biomarkers of progression and their usefulness to stratify risk. Methods: A longitudinal study was conducted with a seven-year follow-up (2017-2024) on 72 workers with simple silicosis (SS) or progressive massive fibrosis (PMF), all with a history of cutting, polishing, and finishing ES countertops. Data on lung function and levels of 27 cytokines were collected at four control points. Machine learning (ML) models were built to classify the disease stage and predict its progression. Results: 39% of patients with SS progressed to PMF. Significant differences in the expression of some cytokines were observed between ESS stages, suggesting a role in the evolution of the inflammatory process. Specifically, higher levels of IL-1RA, IL-8, IL-9, and IFN-γ were found at checkpoint 1 in patients with PMF compared to SS. The longitudinal analysis revealed a significant relationship between IL-1RA and MCP-1α and disease duration with MCP-1α also being associated with time and disease grade. Machine learning (ML) models were built using the cytokines selected through a sequential backward feature selection. The Support Vector Machine model achieved an accuracy of 83% in classifying disease stage (SS, PMF), and of 77% in predicting the disease progression. Conclusions: The findings suggest that cytokines can be used as dynamic biomarkers to reflect underlying inflammatory processes and monitor disease evolution. The performance of ML algorithms to predict diagnostic status based on cytokine profiles highlights their clinical value in supporting early diagnosis, monitoring disease progression, and guiding clinical decisions. Full article
Show Figures

Figure 1

2024

Jump to: 2025

16 pages, 1101 KB  
Article
Development and Evaluation of a GPT4-Based Orofacial Pain Clinical Decision Support System
by Charlotte Vueghs, Hamid Shakeri, Tara Renton and Frederic Van der Cruyssen
Diagnostics 2024, 14(24), 2835; https://doi.org/10.3390/diagnostics14242835 - 17 Dec 2024
Cited by 2 | Viewed by 1638
Abstract
Background: Orofacial pain (OFP) encompasses a complex array of conditions affecting the face, mouth, and jaws, often leading to significant diagnostic challenges and high rates of misdiagnosis. Artificial intelligence, particularly large language models like GPT4 (OpenAI, San Francisco, CA, USA), offers potential [...] Read more.
Background: Orofacial pain (OFP) encompasses a complex array of conditions affecting the face, mouth, and jaws, often leading to significant diagnostic challenges and high rates of misdiagnosis. Artificial intelligence, particularly large language models like GPT4 (OpenAI, San Francisco, CA, USA), offers potential as a diagnostic aid in healthcare settings. Objective: To evaluate the diagnostic accuracy of GPT4 in OFP cases as a clinical decision support system (CDSS) and compare its performance against treating clinicians, expert evaluators, medical students, and general practitioners. Methods: A total of 100 anonymized patient case descriptions involving diverse OFP conditions were collected. GPT4 was prompted to generate primary and differential diagnoses for each case using the International Classification of Orofacial Pain (ICOP) criteria. Diagnoses were compared to gold-standard diagnoses established by treating clinicians, and a scoring system was used to assess accuracy at three hierarchical ICOP levels. A subset of 24 cases was also evaluated by two clinical experts, two final-year medical students, and two general practitioners for comparative analysis. Diagnostic performance and interrater reliability were calculated. Results: GPT4 achieved the highest accuracy level (ICOP level 3) in 38% of cases, with an overall diagnostic performance score of 157 out of 300 points (52%). The model provided accurate differential diagnoses in 80% of cases (400 out of 500 points). In the subset of 24 cases, the model’s performance was comparable to non-expert human evaluators but was surpassed by clinical experts, who correctly diagnosed 54% of cases at level 3. GPT4 demonstrated high accuracy in specific categories, correctly diagnosing 81% of trigeminal neuralgia cases at level 3. Interrater reliability between GPT4 and human evaluators was low (κ = 0.219, p < 0.001), indicating variability in diagnostic agreement. Conclusions: GPT4 shows promise as a CDSS for OFP by improving diagnostic accuracy and offering structured differential diagnoses. While not yet outperforming expert clinicians, GPT4 can augment diagnostic workflows, particularly in primary care or educational settings. Effective integration into clinical practice requires adherence to rigorous guidelines, thorough validation, and ongoing professional oversight to ensure patient safety and diagnostic reliability. Full article
Show Figures

Figure 1

16 pages, 1344 KB  
Article
Evaluating Large Language Model (LLM) Performance on Established Breast Classification Systems
by Syed Ali Haider, Sophia M. Pressman, Sahar Borna, Cesar A. Gomez-Cabello, Ajai Sehgal, Bradley C. Leibovich and Antonio Jorge Forte
Diagnostics 2024, 14(14), 1491; https://doi.org/10.3390/diagnostics14141491 - 11 Jul 2024
Cited by 15 | Viewed by 3285
Abstract
Medical researchers are increasingly utilizing advanced LLMs like ChatGPT-4 and Gemini to enhance diagnostic processes in the medical field. This research focuses on their ability to comprehend and apply complex medical classification systems for breast conditions, which can significantly aid plastic surgeons in [...] Read more.
Medical researchers are increasingly utilizing advanced LLMs like ChatGPT-4 and Gemini to enhance diagnostic processes in the medical field. This research focuses on their ability to comprehend and apply complex medical classification systems for breast conditions, which can significantly aid plastic surgeons in making informed decisions for diagnosis and treatment, ultimately leading to improved patient outcomes. Fifty clinical scenarios were created to evaluate the classification accuracy of each LLM across five established breast-related classification systems. Scores from 0 to 2 were assigned to LLM responses to denote incorrect, partially correct, or completely correct classifications. Descriptive statistics were employed to compare the performances of ChatGPT-4 and Gemini. Gemini exhibited superior overall performance, achieving 98% accuracy compared to ChatGPT-4’s 71%. While both models performed well in the Baker classification for capsular contracture and UTSW classification for gynecomastia, Gemini consistently outperformed ChatGPT-4 in other systems, such as the Fischer Grade Classification for gender-affirming mastectomy, Kajava Classification for ectopic breast tissue, and Regnault Classification for breast ptosis. With further development, integrating LLMs into plastic surgery practice will likely enhance diagnostic support and decision making. Full article
Show Figures

Figure 1

Back to TopTop