energies-logo

Journal Browser

Journal Browser

Modeling, Simulation and Optimization of Power Systems: 2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "F1: Electrical Power System".

Deadline for manuscript submissions: 25 December 2025 | Viewed by 647

Special Issue Editors

School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China
Interests: power system stability and control; power system modeling and simulation; DC/FACTS technology; new energy generation and grid connection
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China
Interests: power system modeling; numerical simulation technology and applications of complex network theory in power systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Power systems are complex and interconnected networks that facilitate the generation, transmission, and distribution of electrical energy. Modeling, simulation, and optimization are crucial tools for understanding and managing the complex behavior of power systems, as well as for designing more efficient and reliable power systems.

This Special Issue seeks to bring together researchers and practitioners from academia to present the latest advances in the modeling, simulation, and optimization of power systems.

We invite original research papers, review articles, and case studies on topics that include, but are not limited to, the following:

  • Power system modeling and simulation techniques.
  • Optimization methods for power system planning and operation.
  • Energy management systems and smart grid technologies.
  • Power system stability and control.
  • Power system protection and reliability.
  • Power electronics and renewable energy integration.
  • Power system dynamics and transient analysis.
  • Demand response and energy storage systems.
  • Cybersecurity in power systems.
  • Economic analysis of power system planning and operation.

Dr. Lin Zhu
Dr. Zhigang Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • power system transient stability
  • model reduction
  • real-time simulator
  • nonlinear modeling
  • parameter identification
  • dynamic equivalent
  • data-driven

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5127 KB  
Article
Design of Two-Degree-of-Freedom PID Controllers Optimized by Bee Algorithm for Frequency Control in Renewable Energy Systems
by Sarawoot Boonkirdram, Sitthisak Audomsi, Worawat Sa-Ngiamvibool and Wassana Kasemsin
Energies 2025, 18(18), 4880; https://doi.org/10.3390/en18184880 - 13 Sep 2025
Viewed by 535
Abstract
The increasing incorporation of renewable energy sources, such as photovoltaic and wind power, results in considerable variability and uncertainty within modern power systems, thereby complicating load frequency control. Conventional controllers, including PI and PID, often fail to provide sufficient performance in dynamic conditions. [...] Read more.
The increasing incorporation of renewable energy sources, such as photovoltaic and wind power, results in considerable variability and uncertainty within modern power systems, thereby complicating load frequency control. Conventional controllers, including PI and PID, often fail to provide sufficient performance in dynamic conditions. This study introduces a Two-Degree-of-Freedom PID (2DOF-PID) controller optimized through the Bee Algorithm (BA) for Load Frequency Control (LFC) in a two-area interconnected power system that includes renewable energy sources. The BA is employed to enhance controller parameters according to two objective functions: the Integral of Time-weighted Absolute Error (ITAE) and the Integral of Time-weighted Squared Error (ITSE). Simulation studies utilizing MATLAB/Simulink are conducted to evaluate the comparative effectiveness of PI, PID, and 2DOF-PID controllers. The results demonstrate that the 2DOF-PID controller consistently outperforms conventional PI and PID controllers in terms of frequency stability. The ITAE optimization of the 2DOF-PID results in a reduction in the ITAE index by more than 95% compared to PI and PID controllers, a decrease in settling time by approximately 40–60%, and a near elimination of overshoot and undershoot. Through ITSE optimization, the 2DOF-PID achieves an error reduction exceeding 90% and ensures smooth convergence with minimal oscillations. The PID controller has slightly improved effectiveness in minimizing tie-line power deviation, whereas the 2DOF-PID demonstrates greater resilience and damping capability in frequency regulation across both regions. The findings confirm that the Bee Algorithm-tuned 2DOF-PID controller serves as a robust and effective approach for frequency management in systems primarily reliant on renewable energy sources. Future research should incorporate multi-objective optimization algorithms that concurrently address frequency and tie-line power variations, thereby providing a more equitable control framework for practical Automatic Generation Control (AGC) operations. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Power Systems: 2nd Edition)
Show Figures

Figure 1

Back to TopTop