Entropy-based Data Mining
A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Information Theory, Probability and Statistics".
Deadline for manuscript submissions: closed (31 January 2018) | Viewed by 68310
Special Issue Editors
Interests: complex systems; complex networks; network science; data mining
Special Issues, Collections and Topics in MDPI journals
Interests: data mining; data science project development; medical data analysis; NLP in medical domain
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Entropy and data mining are not so distant as concepts as it may initially appear. They both share a common idea: Information contained in data presents some regularities, or structures, which we ought to understand in order to better understand the system under study. If entropy aims at assessing the presence of these structures, data mining goes one step further, by extracting and making them, explicitly, for further use; however, it is clear that the former is a first and necessary step for the latter.
Not surprising, entropy and data mining have had an intermingled history. Specifically, entropy has been used extensively to define and support data mining algorithms. Examples include the use of entropy metrics as splitting and pruning criteria in Decision Trees; as a mean to weight distances in high-dimensional k-mean clustering algorithms; to select features subsets in classification ensembles; and as a criterion to combine multiple classifiers. Entropy has also buttressed the creation of data mining models, as in maximum entropy classifiers, implementations of the multinomial logistic regression concept, and in outlier detection. On the other hand, entropy has also been used as a way to create new features from data, in order to feed standard data mining algorithms. For instance, different types of entropies have been used to describe time series, e.g., to distinguish between normal and ictal brain dynamics, or to assess heart rate complexity; to describe symbolic sequences, to then compare a set of them, as in DNA and in the identification of protein coding and non-coding sequences; or to assess the complexity of graphs and networks, in order to then distinguish and classify them.
This Special Issue seeks contributions clarifying and strengthening the relationship between these two research fields, with a special focus on, but not limited to, the improvement of data-mining algorithms through the entropy concept, and on the application of entropy in real-world data-mining tasks. We welcome theoretical, as well as experiment works, original research and review papers.
Dr. Massimiliano Zanin
Dr. Ernestina Menasalvas
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Data mining algorithms
- Classification
- Clustering
- Feature selection
- Time series analysis
- Network entropy
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.