Women’s Special Issue Series: Fermentation

A special issue of Fermentation (ISSN 2311-5637).

Deadline for manuscript submissions: 30 June 2026 | Viewed by 5169

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
Interests: gene expression; cloning; metagenomics; lactic acid fermentation; heterologous expression; glycoside hydrolase enzymes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, entitled "Women’s Special Issue Series: Fermentation”, is intended to celebrate and highlight the significant scientific achievements of women scientists that have been leaders within the field of fermentation research. Topics of interest for this Special Issue include, but are not limited to, industrial fermentation, fermentation processes and product development, strain improvement, fermentation food and beverages, microbial physiology and metabolism, and bioinformatics.

In particular, we encourage the submission of articles where the lead authors are women or that are completely authored by women. Nevertheless, we welcome submissions from all authors, irrespective of gender. We warmly invite you to contribute original research papers or comprehensive review articles for peer review and possible publication in this Special Issue.

Prof. Dr. Penka Petrova
Dr. Alice Vilela
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial metabolism
  • fermentation process
  • strain improvement
  • bioprocesses
  • bioreactor design
  • scale-up
  • beverages
  • fermented food
  • bioconversion
  • biofuels
  • commodity chemicals
  • pharmaceuticals
  • bioproducts
  • probiotics
  • gut microbiota

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 2692 KB  
Article
Effect of Operational Parameters on Dark Fermentative Hydrogen Production and Volatile Fatty Acids from Agro-Industrial By-Products
by Angeliki Maragkaki, Andreas Kaliakatsos, Nikolaos Markakis, Emmanouela Maragkaki, Napoleon Christoforos Stratigakis, Iosifina Gounaki, Danae Venieri, Kelly Velonia and Thrassyvoulos Manios
Fermentation 2026, 12(2), 99; https://doi.org/10.3390/fermentation12020099 - 10 Feb 2026
Viewed by 327
Abstract
The purpose of this study was to examine how hydraulic retention time (HRT) influences biohydrogen generation and the formation of end-products during the co-digestion of olive mill wastewater (OMW), cheese whey (CW), and sewage sludge (SS) mixed in a 40:40:20 (v/ [...] Read more.
The purpose of this study was to examine how hydraulic retention time (HRT) influences biohydrogen generation and the formation of end-products during the co-digestion of olive mill wastewater (OMW), cheese whey (CW), and sewage sludge (SS) mixed in a 40:40:20 (v/v/v) ratio. The relationship between the substrates, resulting metabolites, and microbial communities was also explored. Continuous fermentation trials were carried out under both mesophilic (37 °C) and thermophilic conditions using HRTs of 12, 24 and 48 h. Acetic, propionic, and butyric acids were identified as the main end-products. The highest hydrogen production rate (4.4 ± 0.5 L H2/Lreactor/day) occurred under thermophilic conditions at an HRT of 24 h, whereas under mesophilic operation at the same HRT the hydrogen production reached 3.0 ± 0.3 L H2/Lreactor/day. In contrast, the greatest accumulation of volatile fatty acids (VFAs) was observed under mesophilic conditions (10.02 g/L), while thermophilic operation at 24 h HRT resulted in 5.54 g/L of total VFAs. The improved performance under thermophilic fermentation is likely linked to the suppression of hydrogen-consuming bacteria at elevated temperatures, which favors rapid hydrogen producers. Microbial community analysis indicated dominance of Firmicutes and persistent Lactobacillus prevalence across conditions. Shorter HRT at 37 °C promoted community diversification with genera such as Olsenella, Dialister, and Prevotella increasing in relative contribution. Under thermophilic operation, consortia remained Lactobacillus-dominant but showed significant temporal restructuring. The predominance of acetic acid (~2.80 g/L) and butyric acid (~2.60 g/L) indicates that hydrogen generation mainly followed the acetic and butyric pathways. This study reveals how targeted control of HRT and temperature can steer microbial communities toward highly hydrogen-productive consortia in the continuous dark fermentation of mixed agro-industrial wastes. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

18 pages, 1261 KB  
Article
Ethnobiotechnological Analysis of the Lactic Bacterial Diversity in the Mezcal Fermentation of Four Palenques in Oaxaca, Mexico
by Claudia López-Sánchez, Víctor Adrián Espinoza-Martínez, Felipe de Jesús Palma-Cruz, Raúl Enríquez-Valencia, Marcos Pedro Ramírez-López, Lourdes Yaret Ortiz-Cortés and Peggy Elizabeth Álvarez-Gutiérrez
Fermentation 2026, 12(2), 89; https://doi.org/10.3390/fermentation12020089 - 4 Feb 2026
Viewed by 363
Abstract
Mezcal is an ancestral beverage from Oaxaca, Mexico, produced using traditional biotechnological procedures without artificial inoculation. The role of bacteria in fermentation has been studied less. Our work aimed to analyze the bacterial diversity in mezcal must and determine its relationship with ethnobiotechnological [...] Read more.
Mezcal is an ancestral beverage from Oaxaca, Mexico, produced using traditional biotechnological procedures without artificial inoculation. The role of bacteria in fermentation has been studied less. Our work aimed to analyze the bacterial diversity in mezcal must and determine its relationship with ethnobiotechnological variables. Fermentation must samples were collected from four Palenques in the Valles Centrales, Cañada, and Mixteca regions of Oaxaca. Molecular and phenotypic identification and characterization, including ethanol tolerance testing, were performed. Ethnobiotechnological data were acquired through interviews and official databases. Six bacterial genera were identified in mezcal must, including Lactiplantibacillus, Enterobacter, Enterococcus, Bacillus, Leuconostoc, and Levilactobacillus. Therefore, through a factorial experiment, it was determined that the selected Lactiplantibacillus plantarum strains were able to withstand 6% and 8% ethanol. A direct relationship was observed between species diversity and the degree of population marginalization. Palenque 2, representing the most urbanized population, exhibited the lowest diversity, with only two species detected. In contrast, Palenques characterized by high marginalization harbored a substantially greater diversity, ranging from six to ten species. These differences are likely associated with variations in microbiota composition, microbial growth dynamics, and ethanol tolerance. Overall, the findings suggest that ethnobiotechnological factors play a significant role in shaping bacterial diversity. In Oaxaca, “ethnobiotechnological” implies the deep relationship between biodiversity, Indigenous culture, and territory, with a strong emphasis on living traditional knowledge and its intergenerational transmission. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

15 pages, 555 KB  
Article
Techno-Nutritional Improvement of Gluten-Free Breads Using Spontaneous Sourdough of Quinoa and Buckwheat Flours
by María Soledad López, Emiliano Jesús Salvucci, María Verónica Baroni, Romina Di Paola, Gabriela Teresa Pérez and Lorena Susana Sciarini
Fermentation 2025, 11(12), 657; https://doi.org/10.3390/fermentation11120657 - 23 Nov 2025
Viewed by 896
Abstract
The aim of this study was to evaluate the effect of spontaneous sourdoughs on the quality of gluten-free breads formulated with quinoa (Q) and buckwheat (BW) flours in order to improve their nutritional, technological, and sensory attributes. The microbiota of the sourdoughs was [...] Read more.
The aim of this study was to evaluate the effect of spontaneous sourdoughs on the quality of gluten-free breads formulated with quinoa (Q) and buckwheat (BW) flours in order to improve their nutritional, technological, and sensory attributes. The microbiota of the sourdoughs was dominated by Pediococcus pentosaceus and P. acidilactici. Total polyphenols, antioxidant capacity, phytic acid, and free amino acids were determined in sourdoughs (before and after fermentation) and breads. Breads were prepared with three levels of sourdough: 10%, 15%, and 20%. Bread specific volume, crumb firmness, staling rate, crumb structure, and consumer acceptability were evaluated. Sourdoughs showed higher phenolic compound contents compared to the unfermented control, and on average, breads with sourdough contained 67% more phenolics than control breads. Antioxidant activity also increased, particularly in BW sourdough samples. Phytic acid decreased in both sourdoughs and breads, while free amino acids increased. Breads with Q and BW sourdoughs exhibited a specific volume 40% and 25% higher, respectively, than the control, along with lower firmness and slower staling. BW sourdough breads reached the highest overall consumer acceptance. Incorporation of Q and BW spontaneous sourdoughs, especially at 20% substitution, significantly improved the nutritional, technological, and sensory quality of gluten-free breads. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

14 pages, 1475 KB  
Article
Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions
by Angeliki Maragkaki, Napoleon Christoforos Stratigakis, Tahereh Jafarpour Checkab, Lisa De Toni, Ioannis Choinopoulos, Andreas Kaliakatsos, Iosifina Gounaki, Danae Venieri, Thrassyvoulos Manios and Kelly Velonia
Fermentation 2025, 11(11), 644; https://doi.org/10.3390/fermentation11110644 - 14 Nov 2025
Viewed by 971
Abstract
Mesophilic anaerobic co-digestion of eight distinct substrate mixtures of agroindustrial and food wastes was assessed to determine the most efficient waste mixture for maximizing hydrogen production. To evaluate the impact of adding various mixtures on dark fermentation (DF), batch tests were conducted for [...] Read more.
Mesophilic anaerobic co-digestion of eight distinct substrate mixtures of agroindustrial and food wastes was assessed to determine the most efficient waste mixture for maximizing hydrogen production. To evaluate the impact of adding various mixtures on dark fermentation (DF), batch tests were conducted for 250 h at 37 °C and a pH range between 5.0 and 5.9. Ethanol, butyric, propionic, acetic, and isobutyric acids were identified as the principal fermentation end products. The hydrogen production rate reached in a decreasing order from a mixture comprising 55% Olive Mill Wastewater (OMW), 40% Cheese Whey (CW), and 5% Sewage Sludge (SS) or Liquid Pig Manure (LPM) (38 NmL/gVS) to 55% OMW, 40% CW and 5% diluted Food Waste (FWdil) (30 NmL/gVS), 60% CW and 40% Grape Residues (GR) (27 NmL/gVS), 80% CW and 20% LPM (13 NmL/gVS), 60% OMW and 40% FWdil. (10 NmL/gVS), 60% CW and 40% FWdil, (8 NmL/gVS) and 70% OMW and 30% SS (5 NmL/gVS). These results indicated that H2 was generated through mixed fermentation pathways, while the addition of OMW > 55% inhibited microbial activity and reduced hydrogen production. The highest hydrogen yield (38 NmL/gVS), accompanied by 27.6%, Volatile Solids (VS) reduction and the highest Volatile Fatty Acids (VFAs) concentration (6.1 g/L). The same substrate mixture resulted in the highest accumulation of acetic and butyric acid in the acidified effluent, indicating the dominance of hydrogen-producing metabolic routes. The data suggest that co-fermentation of the selected residues not only enhances hydrogen production but also creates more stable operational conditions -including improved pH regulation, increased carbohydrate conversion, and greater VFAs accumulation- making the process more robust and viable for practical application. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 1268 KB  
Review
Precision Biomanufacturing with Lactic Acid Bacteria: From Ancestral Fermentations to Technological Innovation and Future Prospects for Next-Generation Functional Foods
by Ana Yanina Bustos and Carla Luciana Gerez
Fermentation 2026, 12(1), 33; https://doi.org/10.3390/fermentation12010033 - 6 Jan 2026
Viewed by 1012
Abstract
The context of food science and biotechnology is undergoing a profound transformation, characterized by an evolutionary shift from conventional large-scale fermentation to precision biomanufacturing, positioning Lactic Acid Bacteria (LAB) as versatile cellular biofactories for next-generation functional foods. This review analyzes the evolutionary role [...] Read more.
The context of food science and biotechnology is undergoing a profound transformation, characterized by an evolutionary shift from conventional large-scale fermentation to precision biomanufacturing, positioning Lactic Acid Bacteria (LAB) as versatile cellular biofactories for next-generation functional foods. This review analyzes the evolutionary role of LAB, their utilization as probiotics, and the technological advances driving this shift. This work also recognizes the fundamental contributions of pioneering women in the field of biotechnology. The primary methodology relies on the seamless integration of synthetic biology (CRISPR-Cas editing), Multi-Omics analysis, and advanced Artificial Intelligence/Machine Learning, enabling the precise, rational design of LAB strains. This approach has yielded significant findings, including successful metabolic flux engineering to optimize the biosynthesis of high-value nutraceuticals such as Nicotinamide Mononucleotide and N-acetylglucosamine, and the development of Live Biotherapeutic Products using native CRISPR systems for the expression of human therapeutic peptides (e.g., Glucagon-like Peptide-1 for diabetes). From an industrial perspective, this convergence enhances strain robustness and supports the digitalized circular bioeconomy through the valorization of agri-food by-products. In conclusion, LAB continue to consolidate their position as central agents for the development of next-generation functional foods. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Figure 1

21 pages, 2605 KB  
Review
Metal–Organic Frameworks as Synergistic Scaffolds in Biomass Fermentation: Evolution from Passive Adsorption to Active Catalysis
by Tao Liu, Chuming Wang, Haozhe Zhou and Wen Luo
Fermentation 2026, 12(1), 9; https://doi.org/10.3390/fermentation12010009 - 22 Dec 2025
Viewed by 722
Abstract
Microbial fermentation stands as the foundational technology in modern biorefineries, yet its industrial scalability is critically constrained by product inhibition, prohibitive downstream separation costs, and substrate inhibition. Metal–organic frameworks (MOFs) offer a tunable material platform to address these challenges through rational design of [...] Read more.
Microbial fermentation stands as the foundational technology in modern biorefineries, yet its industrial scalability is critically constrained by product inhibition, prohibitive downstream separation costs, and substrate inhibition. Metal–organic frameworks (MOFs) offer a tunable material platform to address these challenges through rational design of pore size, shape, and chemical functionality. This review systematically chronicles the evolution of MOF applications in biomass fermentation across four generations, demonstrating a synergistic mapping where the core fermentation challenges—product toxicity, substrate toxicity, and separation energy intensity—align with the inherent MOF advantages of high adsorption capacity, programmable selectivity, and tunable functionality. The applications progress from first-generation passive adsorbents for in situ product removal, to second-generation protective agents for mitigating inhibitors, and third-generation immobilization scaffolds enabling continuous processing. The fourth-generation systems transcend passive scaffolding to position MOFs as active metabolic partners in microbe-MOF hybrids, driving cofactor regeneration and tandem biocatalysis. By synthesizing diverse research streams, ranging from defect engineering to artificial symbiosis, including defect engineering strategies, this review establishes critical design principles for the rational integration of programmable materials in next-generation biorefineries. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Fermentation)
Show Figures

Graphical abstract

Back to TopTop