Biofuels and Green Technology

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 538

Special Issue Editor

Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Interests: sustainable energy; biofuels; green technologies; fermentation; biomass biochemical conversion

Special Issue Information

Dear Colleagues,

The increasing demand for sustainable energy solutions and the urgent need to reduce carbon emissions have highlighted the importance of biofuels and green technologies. Fermentation plays a crucial role in advancing these fields by enabling the efficient conversion of renewable resources into bioenergy and other valuable products. The topics of interest for this Special Issue include, but are not limited to, bioconversion of renewable resources, fermentation for bioenergy production, microbial fuel cells, enzyme engineering for improved bioconversion efficiency, production of bio-based chemicals, and the integration of bioprocesses with green technologies to enhance efficiency and sustainability.

We encourage contributions from experts aiming to bridge the gap between research and application, showcasing advancements in fermentation technology that promote a greener future.

Dr. Wen Luo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable energy
  • biofuels
  • biomass
  • green technologies
  • fermentation
  • bioenergy production
  • enzyme engineering
  • bio-based chemicals

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 12247 KiB  
Article
Characterization of Low pH and Inhibitor Tolerance Capacity of Candida krusei Strains
by Hironaga Akita, Daisuke Moriguchi and Akinori Matsushika
Fermentation 2025, 11(3), 146; https://doi.org/10.3390/fermentation11030146 - 14 Mar 2025
Viewed by 388
Abstract
Interest in the production of bioethanol from inedible biomass is growing worldwide because of its sustainable supply and lack of competition with food supplies. Candida krusei (also known as Pichia kudriavzevii or Issatchenkia orientalis) is one of the most suitable thermotolerant yeasts [...] Read more.
Interest in the production of bioethanol from inedible biomass is growing worldwide because of its sustainable supply and lack of competition with food supplies. Candida krusei (also known as Pichia kudriavzevii or Issatchenkia orientalis) is one of the most suitable thermotolerant yeasts used in the simultaneous saccharification and fermentation process for bioethanol production. In the production of bioethanol from lignocellulosic biomass as a feedstock, various environmental conditions occur, and the stress tolerance capacity of C. krusei, especially its low pH and tolerance to inhibitors, limits its practical application. In this study, to select a suitable second-generation bioethanol-producing strain, the tolerance capacity of five available C. krusei strains (NBRC0584, NBRC0841, NBRC1162, NBRC1395 and NBRC1664) was characterized. Spot assay and growth experiment results showed that among the five C. krusei strains, C. krusei NBRC1664 showed superior tolerance capacity for low pH and inhibitors. Furthermore, this strain efficiently produced ethanol from glucose under low pH conditions with or without sulfate. A comparative analysis of the draft genome sequences suggested that Opy2, Sln1 and Cdc24 in the HOG pathway are conserved only in C. krusei NBRC1664, which may contribute to its superior tolerance to low pH levels. Moreover, amino acid sequence alignment showed that aldehyde dehydrogenase family proteins, which catalyze the degradation of cyclic aldehydes, are commonly conserved in C. krusei. In addition, the increased transcription levels in C. krusei NBRC1664 could play a role in its higher tolerance to inhibitors. These results suggest that C. krusei NBRC1664 is a more suitable strain for application in industrial processes for second-generation bioethanol production. Full article
(This article belongs to the Special Issue Biofuels and Green Technology)
Show Figures

Figure 1

Back to TopTop