Advances in Biotechnologies and Process Technologies for the Beverage Industry

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Drinks and Liquid Nutrition".

Deadline for manuscript submissions: 25 December 2025 | Viewed by 598

Special Issue Editors


E-Mail Website
Guest Editor
Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
Interests: food science and technology; food quality; processing; brewing science; beverage research; food biochemistry; post-harvest technology; sensory analysis

Special Issue Information

Dear Colleagues,

This Special Issue of Foods delves into the processes and biotechnologies of the beverage industry. It examines innovative approaches to advancing the sector, highlighting the connection between biotechnologies and processes that enhance beverage quality. A key focus is on identifying and characterizing the effect of the applied biotechnologies on production processes, including their impact on beverage quality in terms of volatile and non-volatile chemical compounds, and how these compounds interact to shape the overall sensory experience. This special issue also explores the broader area of environmental sustainability, emphasizing the enhancement of production efficiency through innovative biotechnologies.

Dr. Vincenzo Alfeo
Dr. Aldo Todaro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biotechnologies
  • beverage quality
  • beverage processing
  • process efficiency

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 2099 KB  
Article
Spatiotemporal Profiling of Starch-Degrading Enzymes in Nong-Flavor Daqu: Molecular Markers for Quantitative Quality Evaluation
by Yijia Jiang, Yue Lu, Yanling Jin, Yi Shen, Nian Liu, Shu Bao, Kui Peng, Langfei Gan, Chaokai Wang, Yuling Zhang, Lanchai Chen, Bo Chen, Yao Xiao, Kaize He, Zhuolin Yi and Hai Zhao
Foods 2025, 14(18), 3239; https://doi.org/10.3390/foods14183239 - 18 Sep 2025
Viewed by 354
Abstract
Nong-flavor (NF) Daqu, a critical fermentation starter for traditional Baijiu, harbors diverse starch-degrading enzymes with poorly characterized functional dynamics. This study transcended traditional quality assessments by developing molecular approaches to dissect starch-hydrolyzing enzyme genes. Specific and degenerate primers targeting glucoamylase, α-amylase, and α-glucosidase [...] Read more.
Nong-flavor (NF) Daqu, a critical fermentation starter for traditional Baijiu, harbors diverse starch-degrading enzymes with poorly characterized functional dynamics. This study transcended traditional quality assessments by developing molecular approaches to dissect starch-hydrolyzing enzyme genes. Specific and degenerate primers targeting glucoamylase, α-amylase, and α-glucosidase genes were designed, and key genes were qualitatively identified with distinct distributions among NF Daqus and unique presences between JXL and HB Daqu. Quantitative PCR revealed six genes with elevated expression in JXL Daqu versus HB Daqu, and which peaked during late fermentation in both Daqus. Metagenomics identified greater enzymatic diversity in HB Daqu. Phylogenetic clustering confirmed evolutionary conservation (GH13/GH15/GH31 families) and specificity of core enzyme genes across both Daqus. Enzymatic assays demonstrated the dominance of saccharification over α-glucosidase activity in both Daqus, with significantly higher α-glucosidase activity in JXL than HB Daqu. Divergent starch degradation strategies emerged: JXL prioritized high enzyme expression/activity, while HB utilized broader gene abundance. Based on Pearson correlation analysis, the saccharification activity showed the highest but weak correlation with α-glucosidase gene_15963 (r = 0.26), and was also positively correlated with the expression of all other enzyme genes except one glucoamylase gene. Meanwhile, α-glucosidase activity was most strongly linked to glucoamylase gene_22243 (r = 0.76), with additional correlations with two α-glucosidase genes being observed. This establishes RNA-based biomarkers for real-time quality control. Our findings decode divergent microbial strategies (JXL: high-expression/high-activity vs. HB: high-diversity) and provide a molecular framework for optimizing starch utilization in Baijiu fermentation. This technology holds potential to enable precision-driven standardization of traditional food production, which would reduce processing waste and enhance resource efficiency. Full article
Show Figures

Graphical abstract

Back to TopTop