Potential and Challenges of Plant-Based Bioactive Compounds as Functional Food Ingredients

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: closed (29 July 2024) | Viewed by 5771

Special Issue Editors

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
Interests: bioactive components; carotenoids; polyphenols; natural products; functional food; sustainable food processing
Special Issues, Collections and Topics in MDPI journals
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
Interests: bioactive components; polyphenols; peptides; micronutrients, functional food; vegetable and fruits processing

Special Issue Information

Dear Colleagues,

With increasing attention on human health and environment, functional foods using plant-based bioactive compounds has attracted more and more interest, owing to their health promotion ability, natural sources, and environmentally friendliness. Plant-based bioactive compounds including polyphenols (flavonoids, phenolic acids, anthocyanins, etc.), terpenoids (carotenoids, steroids, cannabinoids, etc.), polysaccharides, peptides, alkaloids, saponins, etc., possess various bioactive functions, such as antioxidant, anticancer, hypotensive, hypolipidemic capacities, etc., presenting great potential as functional food ingredients. However, they face enormous challenges during their application in functional food; for example, they are not stable under various environmental conditions, such as light, temperature, pH, or ionic changes. The unpleasant taste of some bioactive compounds including alkaloids, peptides, etc., are hard for consumers to accept. Additionally, their bioavailability is not satisfied during the gastrointestinal absorption. Therefore, various strategies have been proposed to conquer these challenges, such as diverse delivery systems including nanoemulsion, microencapsulation, etc., which have been developed to improve the stability of plant-based bioactive compounds during storage, to cover up unpleasant taste, or to enhance the bioavailability and bioactivity through controlled or targeted release. Promising techniques aim to facilitate the application of bioactive compounds in functional food will further accelerate the advances of functional food industry.

Dr. Xin Wen
Dr. Mo Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polyphenols
  • terpenoids
  • polysaccharides
  • peptides
  • alkaloids
  • bioactive compounds
  • functional food
  • taste
  • stability
  • bioavailability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 10083 KiB  
Article
The Aqueous Extract of Hemerocallis citrina Baroni Improves the Lactation-Promoting Effect in Bovine Mammary Epithelial Cells through the PI3K-AKT Signaling Pathway
by Jiaxu Chen, Zhaoping Pan, Qili Li, Yanyang Wu, Xiaopeng Li, Xue Wang, Dandan Hao, Xiaoyu Peng, Lina Pan, Wei Li, Jiaqi Wang, Tao Li and Fuhua Fu
Foods 2024, 13(17), 2813; https://doi.org/10.3390/foods13172813 - 4 Sep 2024
Viewed by 427
Abstract
Insufficient milk supply is a widespread issue faced by women globally and associated with a higher risk of health problems in infants and mothers. Hemerocallis citrina Baron, commonly known as daylily, is a perennial edible plant often used in traditional Asian cuisine to [...] Read more.
Insufficient milk supply is a widespread issue faced by women globally and associated with a higher risk of health problems in infants and mothers. Hemerocallis citrina Baron, commonly known as daylily, is a perennial edible plant often used in traditional Asian cuisine to promote lactation. However, the active compound(s) and mechanism of its lactation-promoting effect remain unclear. This study aimed to confirm the traditional use of daylily in promoting lactation and investigate its potential active components and underlying molecular mechanisms. Our results showed that the aqueous extracts of H. citrina Baroni (HAE) significantly enhanced milk production, and the serum levels of lactation-related hormones, and promoted mammary gland development in lactating rats, as well as increased the levels of milk components in bovine mammary epithelial cells (BMECs) (p < 0.05). UHPLC-Q-Exactive Orbitrap-MS analysis revealed that hexamethylquercetin (HQ) is the representative flavonoid component in HAE, accounting for 42.66% of the total flavonoids. An integrated network pharmacology and molecular docking analysis suggested that HQ may be the potential active flavonoid in HAE that promotes lactation, possibly supporting lactation by binding to key target proteins such as STAT5A, PIK3CA, IGF1R, TP53, CCND1, BCL2, INS, AR, and DLD. Cell experiments further demonstrated that HQ could promote cell proliferation and the synthesis of milk proteins, lactose, and milk fat in BMECs. Transcriptomic analysis combined with a quantitative reverse transcription polymerase chain reaction (RT-qPCR) revealed that both HAE and HQ exert a lactation-promoting function mainly through regulating the expression of key genes in the PI3K-Akt signaling pathway. Full article
Show Figures

Graphical abstract

20 pages, 9197 KiB  
Article
Exosomal Delivery Enhances the Antiproliferative Effects of Acid-Hydrolyzed Apiaceae Spice Extracts in Breast Cancer Cells
by Jared L. Scott, Ramesh C. Gupta, Farrukh Aqil, Jeyaprakash Jeyabalan and David J. Schultz
Foods 2024, 13(17), 2811; https://doi.org/10.3390/foods13172811 - 4 Sep 2024
Viewed by 574
Abstract
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum [...] Read more.
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum exosomes are a compelling drug delivery platform that could address this issue; these natural nanoparticles can be loaded with hydrophilic and lipophilic small molecules and biologics, resulting in lower doses needed to inhibit cancer growth. Ethanolic extracts of eight Apiaceae spices were examined for phytochemical content and antiproliferative potential. Acid hydrolysis (AH) was employed to remove glycosides, asses its impacts on extract efficacy, and evaluate its effects on exosome loading and subsequent formulation efficacy. Antiproliferative activity was assessed through MTT assays on T-47D, MDA-MB-231, and BT-474 breast cancer cells; all extracts exhibited broad antiproliferative activity. AH enhanced the bioactivity of cumin, caraway, and fennel in T-47D cells. Celery, cumin, anise, and ajwain showed the highest activity and were assayed in exosomal formulations, which resulted in reduced doses required to inhibit cellular proliferation for all extracts except AH-cumin. Apiaceae spice extracts demonstrated antiproliferative activities that can be improved with AH and further enhanced with exosomal delivery. Full article
Show Figures

Figure 1

18 pages, 1866 KiB  
Article
Anti-Inflammatory, Cytotoxic, and Genotoxic Effects of Soybean Oligopeptides Conjugated with Mannose
by Pornsiri Pitchakarn, Pensiri Buacheen, Sirinya Taya, Jirarat Karinchai, Piya Temviriyanukul, Woorawee Inthachat, Supakit Chaipoot, Pairote Wiriyacharee, Rewat Phongphisutthinant, Sakaewan Ounjaijean and Kongsak Boonyapranai
Foods 2024, 13(16), 2558; https://doi.org/10.3390/foods13162558 - 16 Aug 2024
Viewed by 598
Abstract
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert [...] Read more.
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity. Moreover, recent research found that an attachment of chemical moieties to peptides could improve their properties including their biodistribution, pharmacokinetic, and biological activities with lower toxicity. This study therefore aimed to acquire scientific evidence to support the further application and safe use of the soybean oligopeptide (OT) conjugated with allulose (OT-AL) or D-mannose (OT-Man). The anti-inflammation, cytotoxicity, and genotoxicity of OT, OT-AL, and OT-Man were investigated. The results showed that OT, AL, Man, OT-AL, and OT-Man at doses of up to 1000 µg/mL were not toxic to HepG2 (liver cancer cells), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and pre- and mature-3T3-L1 (fibroblasts and adipocytes, respectively), while slightly delaying the proliferation of RAW 264.7 cells (macrophages) at high doses. In addition, the oligopeptides at up to 800 µg/mL were not toxic to isolated human peripheral blood mononuclear cells (PBMCs) and did not induce hemolysis in human red blood cells (RBCs). OT-Man (200 and 400 µg/mL), but not OT, AL, Man, and OT-AL, significantly reduced the production of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells, suggesting that the mannose conjugation of soy peptide had an inhibitory effect against LPS-stimulated inflammation. In addition, the secretion of interleukin-6 (IL-6) stimulated by LPS was significantly reduced by OT-AL (200 and 400 µg/mL) and OT-Man (400 µg/mL). The tumor necrosis factor-α (TNF-α) level was significantly decreased by OT (400 µg/mL), AL (400 µg/mL), OT-AL (200 µg/mL), and OT-Man (200 and 400 µg/mL) in the LPS-stimulated cells. The conjugation of the peptides with either AL or Man is likely to be enhance the anti-inflammation ability to inhibit the secretion of cytokines. As OT-Man exhibited a high potential to inhibit LPS-induced inflammation in macrophages, its mutagenicity ability was then assessed in bacteria and Drosophila. These findings showed that OT-Man did not trigger DNA mutations and was genome-safe. This study provides possible insights into the health advantages and safe use of conjugated soybean peptides. Full article
Show Figures

Figure 1

15 pages, 2296 KiB  
Article
Seasonal and Morphology Effects on Bioactive Compounds, Antioxidant Capacity, and Sugars Profile of Black Carrot (Daucus carota ssp. sativus var. atrorubens Alef.)
by José Luis Ordóñez-Díaz, Isabel Velasco-Ruiz, Cristina Velasco-Tejero, Gema Pereira-Caro and José Manuel Moreno-Rojas
Foods 2024, 13(10), 1575; https://doi.org/10.3390/foods13101575 - 18 May 2024
Viewed by 922
Abstract
Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. [...] Read more.
Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. Therefore, this autochthonous variety was characterized according to the root size and the harvesting season by means of a study of its antioxidant capacity analyzed by three methods, its total carotenoids content, and its sugars and phenolic compounds profile by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-MS). A total of 20 polyphenolic compounds were quantified in 144 samples analyzed. The anthocyanidins group was observed to be the most abundant, followed by the hydroxycinnamic acids group. Moreover, pelargonidin 3-sambubioside was observed in black carrot for the first time. The medium-sized carrots presented the highest content of phenolic compounds, largely due to their significantly higher anthocyanidins content. Comparatively, the small carrots showed a higher content of simple sugars than the large ones. Regarding the influence of season, significantly higher quantities of glucose and fructose were observed in the late-season carrots, while sucrose was the main sugar in early-season samples. No significant differences were observed in the total carotenoid content of black carrot. Full article
Show Figures

Graphical abstract

17 pages, 4142 KiB  
Article
Deep Eutectic Solvents as New Extraction Media for Flavonoids in Mung Bean
by Jingyu Gao, Longli Xie, Yu Peng, Mo Li, Jingming Li, Yuanying Ni and Xin Wen
Foods 2024, 13(5), 777; https://doi.org/10.3390/foods13050777 - 1 Mar 2024
Cited by 1 | Viewed by 1172
Abstract
Mung beans contain abundant flavonoids like vitexin and isovitexin, which contribute to their strong bioactivities, such as antioxidant effects, so efforts should focus on extracting bioactive flavonoids as well as aligning with the goal of green extraction for specific applications. Deep eutectic solvent [...] Read more.
Mung beans contain abundant flavonoids like vitexin and isovitexin, which contribute to their strong bioactivities, such as antioxidant effects, so efforts should focus on extracting bioactive flavonoids as well as aligning with the goal of green extraction for specific applications. Deep eutectic solvent coupled with ultrasound-assisted extraction (DES-UAE) was applied to extract flavonoids from mung beans, and eight different DESs were compared on the extraction yield. In addition, the traditional extraction method with 30% ethanol was performed as the reference. The results showed that ethylene glycol-glycolic acid achieved the highest yield among all the DESs, 1.6 times that of the reference values. Furthermore, the DES-UAE parameters were optimized as a 60 mL/g liquid–solid ratio, 30% water content in DES, 200 W ultrasonic power, 67 °C ultrasonic temperature, and 10 min extraction time, leading to the DES extract with the maximum extraction yield of 2339.45 ± 42.98 μg/g, and the significantly stronger DPPH and ABTS radical scavenging ability than the traditional extract. Therefore, employing DES and ultrasonic extraction together offers a green method for extracting flavonoids from mung beans, advancing the development and utilization of plant-derived effective components in a sustainable manner. Full article
Show Figures

Graphical abstract

20 pages, 6820 KiB  
Article
Synergistic Hydrolysis of Soy Proteins Using Immobilized Proteases: Assessing Peptide Profiles
by Yuhong Mao, Lan Chen, Luyan Zhang, Yangyang Bian and Chun Meng
Foods 2023, 12(22), 4115; https://doi.org/10.3390/foods12224115 - 13 Nov 2023
Cited by 2 | Viewed by 1496
Abstract
Because of the health benefits and economic opportunities, extracting bioactive peptides from plant proteins, often food processing by-products, garners significant interest. However, the high enzyme costs and the emergence of bitter peptides have posed significant challenges in production. This study achieved the immobilization [...] Read more.
Because of the health benefits and economic opportunities, extracting bioactive peptides from plant proteins, often food processing by-products, garners significant interest. However, the high enzyme costs and the emergence of bitter peptides have posed significant challenges in production. This study achieved the immobilization of Alcalase and Flavorzyme using cost-effective SiO2 microparticles. Mussel-inspired chemistry and biocompatible polymers were employed, with genipin replacing glutaraldehyde for safer crosslinking. This approach yielded an enzyme loading capacity of approximately 25 mg/g support, with specific activity levels reaching around 180 U/mg for immobilized Alcalase (IA) and 35 U/mg for immobilized Flavorzyme (IF). These immobilized proteases exhibited improved activity and stability across a broader pH and temperature range. During the hydrolysis of soy proteins, the use of immobilized proteases avoided the thermal inactivation step, resulting in fewer peptide aggregates. Moreover, this study applied peptidomics and bioinformatics to profile peptides in each hydrolysate and identify bioactive ones. Cascade hydrolysis with IA and IF reduced the presence of bitter peptides by approximately 20%. Additionally, 50% of the identified peptides were predicted to have bioactive properties after in silico digestion simulation. This work offers a cost-effective way of generating bioactive peptides from soy proteins with reducing potential bitterness. Full article
Show Figures

Graphical abstract

Back to TopTop