Innovative Chromatographic and Spectroscopic Analytical Methods for Analysis of Foods

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Analytical Methods".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 2968

Special Issue Editor

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: spectroscopy; chemometrics; biomimetic sensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Food safety is an important public health issue that affects the health of all human beings and the global economy. As an important part of food safety management, food testing can provide the corresponding data support for its development. With the rapid development of instrumental analysis, the advanced technologies of some disciplines continue to penetrate into food analysis, generating an increasing number of analytical instruments and analytical methods. Chromatography is one of the most dynamic fields in food quality analysis in recent decades, which is essentially a method of physicochemical separation and analysis. Furthermore, spectroscopic analysis refers to analytical methods that use the experimental methods and the principles of spectroscopy to determine the chemical composition and structure of substances. Although the two applications of these methods have been widely used in food safety testing, the innovative applications of these methods at the theoretical and technical levels should also keep up with the trend in response to the increasing demand for modern food testing. Therefore, this Special Issue focuses on modern innovative chromatographic and spectroscopic analysis methods for food quality and safety analysis, which has practical significance and plays a guiding role for the development of food safety testing technology.

Dr. Hui Jiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • column chromatography
  • thin-layer chromatography
  • gas chromatography
  • high-performance liquid chromatography
  • near-infrared spectroscopy
  • infrared spectroscopy
  • raman spectroscopy
  • laser-induced breakdown spectroscopy
  • hyperspectral imaging
  • chemometrics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3744 KiB  
Article
Classification of Plant-Based Drinks Based on Volatile Compounds
by Zsigmond Papp, Laura Gabriela Nemeth, Sandrine Nzetchouang Siyapndjeu, Anita Bufa, Tamás Marosvölgyi and Zoltán Gyöngyi
Foods 2024, 13(24), 4086; https://doi.org/10.3390/foods13244086 - 17 Dec 2024
Viewed by 410
Abstract
The increasing popularity of plant-based drinks has led to an expanded consumer market. However, available quality control technologies for plant-based drinks are time-consuming and expensive. Two alternative quality control methods, gas chromatography with ion mobility spectrometry (GC-IMS) and an electronic nose, were used [...] Read more.
The increasing popularity of plant-based drinks has led to an expanded consumer market. However, available quality control technologies for plant-based drinks are time-consuming and expensive. Two alternative quality control methods, gas chromatography with ion mobility spectrometry (GC-IMS) and an electronic nose, were used to assess 111 plant-based drink samples. Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to compare 58 volatile organic compound areas of GC-IMS gallery plots and 63 peptide sensors of the electronic nose. PCA results showed that GC-IMS was only able to completely separate one sample, whereas the electronic nose was able to completely separate seven samples. LDA application to GC-IMS analyses resulted in classification accuracies ranging from 15.4% to 100%, whereas application to electronic nose analyses resulted in accuracies ranging from 96.2% to 100%. Both methods were useful for classification, but each had drawbacks, and the electronic nose performed slightly better than GC-IMS. This study represents one of the first studies comparing GC-IMS and an electronic nose for the analysis of plant-based drinks. Further research is necessary to improve these methods and establish a rapid, cost-effective food quality control system based on volatile organic compounds. Full article
Show Figures

Figure 1

15 pages, 1782 KiB  
Article
Proteomic Analysis of the Major Alkali-Soluble Inca Peanut (Plukenetia volubilis) Proteins
by Erwin Torres-Sánchez, Esperanza Morato, Blanca Hernández-Ledesma and Luis-Felipe Gutiérrez
Foods 2024, 13(20), 3275; https://doi.org/10.3390/foods13203275 - 16 Oct 2024
Cited by 1 | Viewed by 1300
Abstract
Sacha Inchi (Plukenetia volubilis) oil press-cake (SIPC) represents a new source of proteins of high biological value, with promissory food applications. However, knowledge of these proteins remains limited. In this study, a Sacha Inchi protein concentrate (SPC) was extracted from the [...] Read more.
Sacha Inchi (Plukenetia volubilis) oil press-cake (SIPC) represents a new source of proteins of high biological value, with promissory food applications. However, knowledge of these proteins remains limited. In this study, a Sacha Inchi protein concentrate (SPC) was extracted from the SIPC, and proteomic analysis was performed to identify the major alkaline-soluble proteins. The electrophoretic profile highlighted the efficacy of alkaline pH and moderate temperature to extract the major proteins, from which a group of proteins, not previously reported, were registered. LC-MS/MS analyses produced abundant high-quality fragmentation spectra. Utilizing the Euphorbiaceae database (DB), 226 proteins were identified, with numerous well-assigned spectra remaining unidentified. PEAKS Studio v11.5 software generated 1819 high-quality de novo peptides. Data are available via ProteomeXchange with identifier PXD052665. Gene ontology (GO) classification allowed the identification of sequenced proteins associated with biological processes, molecular functions, and cellular components in the seed. Consequently, the principal alkali-soluble proteins from SPC were characterized through derived functional analysis, covering 24 seed-storage-, 27 defense-, and 12 carbohydrate- and lipid-metabolism-related proteins, crucial for human nutrition due to their sulfur-containing amino acids, antioxidant properties, and oil yields, respectively. This research makes a significant contribution to the current understanding of the Sacha Inchi proteome and offers valuable insights for its potential applications in the food industry. Full article
Show Figures

Figure 1

23 pages, 4448 KiB  
Article
Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology
by Emanuela Verdini, Tommaso Pacini, Serenella Orsini, Stefano Sdogati and Ivan Pecorelli
Foods 2024, 13(19), 3131; https://doi.org/10.3390/foods13193131 - 30 Sep 2024
Viewed by 739
Abstract
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in [...] Read more.
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in chicken eggs using a score-based methodology. Analytes include glyphosate, its metabolites, and other high-polarity pesticides like Ethephon, Glufosinate, and Fosetyl aluminum, included in the EU’s official control plan. Polar pesticides, characterized by high polarity and hydrophilicity, lead to analytical issues such as poor retention and unconventional peak shapes with traditional reversed-phase methods. Their weak interaction with hydrophobic stationary phases complicates separation, necessitating specific stationary phases to enhance retention and selectivity. This study evaluates these columns’ efficacy in complex matrices like chicken eggs and other food samples. Chromatographic separation was performed using a UPLC system coupled with a Q-TOF mass spectrometer; extraction and purification involved freeze-out, centrifugation, and filtration steps. The study highlights the critical role of column selection in achieving accurate and reliable separation and quantification of highly polar analytes in matrices of animal origin, offering in the meantime an easy-to-apply methodology of selection for the right determination of the best chromatographic column for different purposes. Full article
Show Figures

Figure 1

Back to TopTop