Nutrient Cycling and Plant Nutrition in Forest Ecosystems

A special issue of Forests (ISSN 1999-4907).

Deadline for manuscript submissions: closed (31 August 2016) | Viewed by 105092

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
Interests: forest soil processes; forest fertilization and nutrition; carbon sequestration; greenhouse gas emissions; agroforestry
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
College of Forestry, Beijing Forestry University, Beijing 100083, China
Interests: forest soils; forest nutrition; soil ecology; revegetation; land reclamation; composting; waste management

Special Issue Information

Dear Colleagues,

Nutrient cycling is essential for maintaining nutrient supply to forest plants and for enhancing forest productivity. Nutrient cycling is also strongly linked to greenhouse gas emissions and thus the global climate change. Nutrient cycling and plant nutrition can be severely affected by anthropogenic and natural disturbance regimes. This special issue will provide an avenue to publish recent progress on research on nutrient cycling and plant nutrition in forest ecosystems and how nutrient cycling and plant nutrition are affected by disturbance regimes such as harvesting, atmospheric deposition and climate change.

Dr. Scott X. Chang
Dr. Xiangyang Sun
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Atmospheric Deposition
  • Carbon and Nitrogen Cycling
  • Disturbance
  • Forest Nutrition
  • Global Change
  • Land Reclamation
  • Plant Productivity
  • Nutrient Availability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

1409 KiB  
Article
Sampling Method and Tree-Age Affect Soil Organic C and N Contents in Larch Plantations
by Huimei Wang, Wenjie Wang and Scott X. Chang
Forests 2017, 8(1), 28; https://doi.org/10.3390/f8010028 - 17 Jan 2017
Cited by 51 | Viewed by 6473
Abstract
We currently have a poor understanding of how different soil sampling methods (pedogenetic horizon versus fixed-depth) influence the evaluation of soil properties. Here, 159 soil profiles were sampled from larch (Larix gmelinii) plantations in northeast China using both the pedogenetic horizon [...] Read more.
We currently have a poor understanding of how different soil sampling methods (pedogenetic horizon versus fixed-depth) influence the evaluation of soil properties. Here, 159 soil profiles were sampled from larch (Larix gmelinii) plantations in northeast China using both the pedogenetic horizon and fixed-depth sampling methods. Analysis of variance was used to determine how sampling method influences the assessment of the spatial variation in the concentration and storage of soil organic C (SOC) and N (SON), as well as how these properties are affected by tree age-group (<20, 20–40, and >40 years). In both the 20 cm (surface) and 80 cm (whole profile) sampling depths, pedogenetic sampling resulted in 1.2- to 1.4-fold higher SOC and SON concentrations than fixed-depth sampling. Surface soil nutrient storage between the two sampling methods was not significantly different, but was it was 1.2-fold higher (p < 0.05) with pedogenetic sampling than with fixed-depth sampling in the whole soil profile. For a given error limit in SOC and SON assessments, fixed-depth sampling had a 60%~90% minimum sampling intensity requirement compared with pedogenetic horizon sampling. Additionally, SOC was 1.1- to 1.3-fold greater in the >40 years age-group than in the <20 years age-group (p < 0.05), while SON was the highest in the 20–40 years age-group (p < 0.05). The total amount of SOC and nutrients in soil is fixed regardless how you sample, it is the different assumptions and different ways of extrapolation from samples to the population that cause sampling by horizon versus fixed depth to lead to different conclusions. Our findings highlight that soil sampling method and tree age-group affect the determination of the spatial variation of SOC and SON and future soil assessments should control for methodological differences. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1894 KiB  
Article
Phosphorus in Preferential Flow Pathways of Forest Soils in Germany
by Dorit Julich, Stefan Julich and Karl-Heinz Feger
Forests 2017, 8(1), 19; https://doi.org/10.3390/f8010019 - 30 Dec 2016
Cited by 24 | Viewed by 7418
Abstract
The transport of nutrients in forest soils predominantly occurs along preferential flow pathways (PFP). This study investigated the composition of phosphorus (P) forms in PFPs and soil matrix in several temperate beech forests with contrasting soil P contents in Germany. The PFPs were [...] Read more.
The transport of nutrients in forest soils predominantly occurs along preferential flow pathways (PFP). This study investigated the composition of phosphorus (P) forms in PFPs and soil matrix in several temperate beech forests with contrasting soil P contents in Germany. The PFPs were visualized using dye tracer experiments. Stained and unstained soil was sampled from three profile cuts per plot and analyzed for P fractions. The results show that labile P concentrations were highest in the O-layer and had the same range of values at all sites (240–320 mg·kg−1), although total P (TP) differed considerably (530–2330 mg·kg−1). The ratio of labile P to TP was significantly lower in the P-rich soil compared to the medium and P-poor soils. By contrast, the ratio of moderately labile P to TP was highest at the P-rich site. The shifts in P fractions with soil depth were generally gradual in the P-rich soil, but more abrupt at the others. The contents of labile and moderately labile P clearly differed in PFPs compared to soil matrix, but not statistically significant. The studied soils are characterized by high stone contents with low potential for P sorption. However, indications were found that labile organically bound P accumulates in PFPs such as biopores. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1628 KiB  
Article
Effect of Timber Harvest Intensities and Fertilizer Application on Stocks of Soil C, N, P, and S
by Marcella L.C. Menegale, Jose Henrique T. Rocha, Robert Harrison, Jose Leonardo de M. Goncalves, Rodrigo F. Almeida, Marisa De C. Piccolo, Ayeska Hubner, Jose Carlos Arthur Junior, Alexandre De Vicente Ferraz, Jason N. James and Stephani Michelsen-Correa
Forests 2016, 7(12), 319; https://doi.org/10.3390/f7120319 - 21 Dec 2016
Cited by 17 | Viewed by 4964
Abstract
The purpose of this study was to determine the stocks of available P and S, total N, and oxidizable C at depth in an Oxisol cultivated with Eucalyptus in Brazil following different timber harvest intensities and fertilizer application over 12 years. The harvest [...] Read more.
The purpose of this study was to determine the stocks of available P and S, total N, and oxidizable C at depth in an Oxisol cultivated with Eucalyptus in Brazil following different timber harvest intensities and fertilizer application over 12 years. The harvest regimes considered were (i) conventional stem-only harvest (all forest residues were maintained on the soil); (ii) whole-tree harvest (only litter was maintained on the soil—all slash, stemwood, and bark were removed); and (iii) whole-tree harvest + litter layer removal. The site was planted in 2004 considering three timber harvest intensities, some with and some without N and P fertilization. In 2012 the experiment was reinstalled, and all the treatments were reapplied in the each plot. From 2004 to 2016, nutrient accumulation and soil N, P, and S stocks were assessed in the 0–20 cm layer. Also in 2016, soil N, P, S, and oxidizable C stocks were measured to 2 m depth. For each treatment, the net balance of N, P, and S were calculated from soil stocks and harvest outputs during two forest rotations. A reduction in all nutrient stocks was observed in the 0–20 cm layer for all treatments. For N, this reduction was 20% smaller in the stem-only harvest treatment and 40% higher when no N fertilizer was applied, when compared to other treatments. Stem-only harvest treatment was observed to reduce the loss of N, P, and S due to harvest by 300, 30, and 25 kg·ha−1, respectively, when compared to the whole-tree harvest + litter layer removal treatment. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1824 KiB  
Article
The Effect of Harvest on Forest Soil Carbon: A Meta-Analysis
by Jason James and Rob Harrison
Forests 2016, 7(12), 308; https://doi.org/10.3390/f7120308 - 7 Dec 2016
Cited by 133 | Viewed by 16261
Abstract
Forest soils represent a substantial portion of the terrestrial carbon (C) pool, and changes to soil C cycling are globally significant not only for C sequestration but also for sustaining forest productivity and ecosystem services. To quantify the effect of harvesting on soil [...] Read more.
Forest soils represent a substantial portion of the terrestrial carbon (C) pool, and changes to soil C cycling are globally significant not only for C sequestration but also for sustaining forest productivity and ecosystem services. To quantify the effect of harvesting on soil C, we used meta-analysis to examine a database of 945 responses to harvesting collected from 112 publications from around the world. Harvesting reduced soil C, on average, by 11.2% with 95% CI [14.1%, 8.5%]. There was substantial variation between responses in different soil depths, with greatest losses occurring in the O horizon (−30.2%). Much smaller but still significant losses (−3.3%) occurred in top soil C pools (0–15 cm depth). In very deep soil (60–100+ cm), a significant loss of 17.7% of soil C in was observed after harvest. However, only 21 of the 945 total responses examined this depth, indicating a substantial need for more research in this area. The response of soil C to harvesting varies substantially between soil orders, with greater losses in Spodosol and Ultisol orders and less substantial losses in Alfisols and Andisols. Soil C takes several decades to recover following harvest, with Spodosol and Ultisol C recovering only after at least 75 years. The publications in this analysis were highly skewed toward surface sampling, with a maximum sampling depth of 36 cm, on average. Sampling deep soil represents one of the best opportunities to reduce uncertainty in the understanding of the response of soil C to forest harvest. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1124 KiB  
Article
Evaluation of Whole Tree Growth Increment Derived from Tree-Ring Series for Use in Assessments of Changes in Forest Productivity across Various Spatial Scales
by Juha M. Metsaranta and Jagtar S. Bhatti
Forests 2016, 7(12), 303; https://doi.org/10.3390/f7120303 - 1 Dec 2016
Cited by 14 | Viewed by 5274
Abstract
The inherent predictability of inter-annual variation in forest productivity remains unknown. Available field-based data sources for understanding this variability differ in their spatial resolution, temporal resolution, and typical units of measure. Nearly all other tree and forest characteristics are in practice derived from [...] Read more.
The inherent predictability of inter-annual variation in forest productivity remains unknown. Available field-based data sources for understanding this variability differ in their spatial resolution, temporal resolution, and typical units of measure. Nearly all other tree and forest characteristics are in practice derived from measurements of diameter at breast height (DBH). Therefore, diameter increment reconstructed annually from tree-ring data can be used to estimate annual growth increments of wood volume, but the accuracy and precision of these estimates requires assessment. Annual growth estimates for n = 170 trees sampled for whole stem analysis from five tree species (jack pine, lodgepole pine, black spruce, white spruce, and trembling aspen) in Western Canada were compared against increments derived from breast height measurements only. Inter-annual variability of breast height and whole tree growth increments was highly correlated for most trees. Relative errors varied by species, diameter class, and the equation used to estimate volume (regional vs. national). A simple example of the possible effect of this error when propagated to the stand level is provided. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1651 KiB  
Article
Estimation of Nutrient Exports Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged Spruce and Pine Stands in Saxony, Northeast Germany
by Christine Knust, Karoline Schua and Karl-Heinz Feger
Forests 2016, 7(12), 302; https://doi.org/10.3390/f7120302 - 30 Nov 2016
Cited by 16 | Viewed by 5174
Abstract
A growing interest in using forest biomass for bioenergy generation may stimulate intensive harvesting scenarios in Germany. We calculated and compared nutrient exports of conventional stem only (SO), whole tree without needles (WT excl. needles), and whole tree (WT) harvesting in two medium [...] Read more.
A growing interest in using forest biomass for bioenergy generation may stimulate intensive harvesting scenarios in Germany. We calculated and compared nutrient exports of conventional stem only (SO), whole tree without needles (WT excl. needles), and whole tree (WT) harvesting in two medium aged Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) stands differing in productivity, and related them to soil nutrient pools and fluxes at the study sites. We established allometric biomass functions for each aboveground tree compartment and analyzed their nutrient contents. We analyzed soil nutrient stocks, estimated weathering rates, and obtained deposition and seepage data from nearby Level II stations. WT (excl. needles) and WT treatments cause nutrient losses 1.5 to 3.6 times higher than SO, while the biomass gain is only 1.18 to 1.25 in case of WT (excl. needles) and 1.28 to 1.30 in case of WT in the pine and spruce stand, respectively. Within the investigated 25-year period, WT harvesting would cause exports of N, K+, Ca2+, and Mg2+ of 6.6, 8.8, 5.4, and 0.8 kg·ha−1 in the pine stand and 13.9, 7.0, 10.6, and 1.8 kg·ha−1 in the spruce stand annually. The relative impact of WT and WT (excl. needles) on the nutrient balance is similar in the pine and spruce stands, despite differences in stand productivities, and thus the absolute amount of nutrients removed. In addition to the impact of intensive harvesting, both sites are characterized by high seepage losses of base cations, further impairing the nutrient budget. While intensive biomass extraction causes detrimental effects on many key soil ecological properties, our calculations may serve to implement measures to improve the nutrient balance in forested ecosystems. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1385 KiB  
Article
The Effects of Fertilization on the Growth and Physiological Characteristics of Ginkgo biloba L.
by Jing Guo, Yaqiong Wu, Bo Wang, Yan Lu, Fuliang Cao and Guibin Wang
Forests 2016, 7(12), 293; https://doi.org/10.3390/f7120293 - 24 Nov 2016
Cited by 46 | Viewed by 8305
Abstract
Ginkgo biloba L. is one of the most extensively planted and productive commercial species in temperate areas around the world, but slow-growth is the most limiting factor for its utilization. Fertilization is one of the key technologies for high quality and high forest [...] Read more.
Ginkgo biloba L. is one of the most extensively planted and productive commercial species in temperate areas around the world, but slow-growth is the most limiting factor for its utilization. Fertilization is one of the key technologies for high quality and high forest yield. To better understand the impacts of fertilization on Ginkgo productivity, the effects of fertilization treatments (single fertilizer and combined fertilizer) on growth, nutrient content in Ginkgo leaves, and photosynthesis characteristics were studied in a 10-year-old Ginkgo plantation over two years. The single factor experiments suggested that DBH (diameter at breast height), H (height), NSL (length of new shoots), and V (trunk volume) showed significant differences between the different levels of single nitrogen (N) or phosphate (P) fertilizer application. Orthogonal test results showed that the nine treatments all promoted the growth of Ginkgo, and the formula (N: 400 g·tree−1, P: 200 g·tree−1, potassium (K): 90 g·tree−1) was the most effective. Gs (stomatal conductance) and Pn (net photosynthesis rate) showed significant differences between the different amounts of single N or P fertilizer application, while single K fertilizer only affected Pn. Combined N, P, and K fertilizer had significant promoting effects on Ci (intercellular CO2 concentration), Gs and Pn. N and P contents in Ginkgo leaves showed significant differences between the different amounts of a single N fertilizer application. A single P fertilizer only improved foliar P contents in Ginkgo leaves. A single K fertilizer application improved N and K content in Ginkgo leaves. The effects of different N, P, and K fertilizer treatments on the nutrient content of Ginkgo leaves were different. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1427 KiB  
Article
Nutrient Resorption and Phenolics Concentration Associated with Leaf Senescence of the Subtropical Mangrove Aegiceras corniculatum: Implications for Nutrient Conservation
by Hui Chen, Benbo Xu, Shudong Wei, Lihua Zhang, Haichao Zhou and Yiming Lin
Forests 2016, 7(11), 290; https://doi.org/10.3390/f7110290 - 22 Nov 2016
Cited by 7 | Viewed by 5299
Abstract
Aegiceras corniculatum (L.) Blanco, a mangrove shrub species in the Myrsine family, often grows at the seaward edge of the mangrove zone in China. In the present study, seasonal dynamics of nutrient resorption and phenolics concentration associated with leaf senescence of A. corniculatum [...] Read more.
Aegiceras corniculatum (L.) Blanco, a mangrove shrub species in the Myrsine family, often grows at the seaward edge of the mangrove zone in China. In the present study, seasonal dynamics of nutrient resorption and phenolics concentration associated with leaf senescence of A. corniculatum were investigated in order to evaluate its possible nutrient conservation strategies in the subtropical Zhangjiang river estuary. It was found that the nitrogen (N) and phosphorus (P) concentrations in mature leaves showed similar seasonal changes with the highest concentrations in winter and the lowest in summer, and were significantly higher than those in senescent leaves. The N:P ratios of mature leaves through the year were found to be less than 14, indicating that the A. corniculatum forest was N-limited. The nitrogen resorption efficiency (NRE) was higher than phosphorus resorption efficiency (PRE), and N resorption was complete. In addition, A. corniculatum leaves contained high total phenolics (TPs) and total condensed tannin (TCT) levels (both above 20%). TPs concentrations in mature and senescent leaves were all inversely related to their N or P concentrations. TPs:N and TCT:N ratios in senescent leaves were significantly higher than those in mature leaves. The obtained results suggested that high NRE during leaf senescence and high TPs:N and TCT:N ratios in senescent leaves might be important nutrient conservation strategies for the mangrove shrub A. corniculatum forest growing in N-limited conditions. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

4096 KiB  
Article
Surface CO2 Exchange Dynamics across a Climatic Gradient in McKenzie Valley: Effect of Landforms, Climate and Permafrost
by Natalia Startsev, Jagtar S. Bhatti and Rachhpal S. Jassal
Forests 2016, 7(11), 279; https://doi.org/10.3390/f7110279 - 15 Nov 2016
Cited by 2 | Viewed by 5696
Abstract
Northern regions are experiencing considerable climate change affecting the state of permafrost, peat accumulation rates, and the large pool of carbon (C) stored in soil, thereby emphasizing the importance of monitoring surface C fluxes in different landform sites along a climate gradient. We [...] Read more.
Northern regions are experiencing considerable climate change affecting the state of permafrost, peat accumulation rates, and the large pool of carbon (C) stored in soil, thereby emphasizing the importance of monitoring surface C fluxes in different landform sites along a climate gradient. We studied surface net C exchange (NCE) and ecosystem respiration (ER) across different landforms (upland, peat plateau, collapse scar) in mid-boreal to high subarctic ecoregions in the Mackenzie Valley of northwestern Canada for three years. NCE and ER were measured using automatic CO2 chambers (ADC, Bioscientific LTD., Herts, England), and soil respiration (SR) was measured with solid state infrared CO2 sensors (Carbocaps, Vaisala, Vantaa, Finland) using the concentration gradient technique. Both NCE and ER were primarily controlled by soil temperature in the upper horizons. In upland forest locations, ER varied from 583 to 214 g C·m−2·year−1 from mid-boreal to high subarctic zones, respectively. For the bog and peat plateau areas, ER was less than half that at the upland locations. Of SR, nearly 75% was generated in the upper 5 cm layer composed of live bryophytes and actively decomposing fibric material. Our results suggest that for the upland and bog locations, ER significantly exceeded NCE. Bryophyte NCE was greatest in continuously waterlogged collapsed areas and was negligible in other locations. Overall, upland forest sites were sources of CO2 (from 64 g·C·m−2·year−1 in the high subarctic to 588 g C·m−2·year−1 in mid-boreal zone); collapsed areas were sinks of C, especially in high subarctic (from 27 g·C·m−2 year−1 in mid-boreal to 86 g·C·m−2·year−1 in high subarctic) and peat plateaus were minor sources (from 153 g·C·m−2·year−1 in mid-boreal to 6 g·C·m−2·year−1 in high subarctic). The results are important in understanding how different landforms are responding to climate change and would be useful in modeling the effect of future climate change on the soil C balance in the northern regions. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

726 KiB  
Article
Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils
by Ching-Yu Huang, Grizelle González and Paul F. Hendrix
Forests 2016, 7(11), 277; https://doi.org/10.3390/f7110277 - 15 Nov 2016
Cited by 5 | Viewed by 4553
Abstract
Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (invasive endogeic Pontoscolex corethrurus, native [...] Read more.
Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (invasive endogeic Pontoscolex corethrurus, native anecic Estherella sp, and native endogeic Onychochaeta borincana) and their effects on soil C and N dynamics in Puerto Rican soils in a 22-day laboratory experiment. Changes of 13C/C and 15N/N in soils, earthworms, and microbial populations were analyzed to evaluate resource utilization by earthworms and their influences on C and N dynamics. Estherella spp. utilized the 13C-labeled litter; however, its utilization on the 13C-labeled litter reduced when cultivated with P. corethrurus and O. borincana. Both P. corethrurus and O. borincana utilized the 13C-labeled litter and 15C-labeled grass roots and root exudates. Pontoscolex corethrurus facilitated soil respiration by stimulating 13C-labeled microbial activity; however, this effect was suppressed possibly due to the changes in the microbial activities or community when coexisting with O. borincana. Increased soil N mineralization by individual Estherella spp. and O. borincana was reduced in the mixed-species treatments. The rapid population growth of P. corethrurus may increase competition pressure on food resources on the local earthworm community. The relevance of resource availability to the population growth of P. corethrurus and its significance as an invasive species is a topic in need of future research. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
1270 KiB  
Article
Understanding the Fate of Applied Nitrogen in Pine Plantations of the Southeastern United States Using 15N Enriched Fertilizers
by Jay E. Raymond, Thomas R. Fox and Brian D. Strahm
Forests 2016, 7(11), 270; https://doi.org/10.3390/f7110270 - 11 Nov 2016
Cited by 16 | Viewed by 5308
Abstract
This study was conducted to determine the efficacy of using enhanced efficiency fertilizer (EEFs) products compared to urea to improve fertilizer nitrogen use efficiency (FNUE) in forest plantations. All fertilizer treatments were labeled with 15N (0.5 atom percent) and applied to 100 [...] Read more.
This study was conducted to determine the efficacy of using enhanced efficiency fertilizer (EEFs) products compared to urea to improve fertilizer nitrogen use efficiency (FNUE) in forest plantations. All fertilizer treatments were labeled with 15N (0.5 atom percent) and applied to 100 m2 circular plots at 12 loblolly pine stands (Pinus taeda L.) across the southeastern United States. Total fertilizer N recovery for fertilizer treatments was determined by sampling all primary ecosystem components and using a mass balance calculation. Significantly more fertilizer N was recovered for all EEFs compared to urea, but there were generally no differences among EEFs. The total fertilizer N ecosystem recovery ranged from 81.9% to 84.2% for EEFs compared to 65.2% for urea. The largest amount of fertilizer N recovered for all treatments was in the loblolly pine trees (EEFs: 38.5%–49.9%, urea: 34.8%) and soil (EEFs: 30.6%–38.8%, urea: 28.4%). This research indicates that a greater ecosystem fertilizer N recovery for EEFs compared to urea in southeastern pine plantations can potentially lead to increased FNUE in these systems. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

1952 KiB  
Article
Spatial Distribution of Soil Nitrogen, Phosphorus and Potassium Stocks in Moso Bamboo Forests in Subtropical China
by Xiaolu Tang, Mingpeng Xia, Fengying Guan and Shaohui Fan
Forests 2016, 7(11), 267; https://doi.org/10.3390/f7110267 - 7 Nov 2016
Cited by 32 | Viewed by 6076
Abstract
Moso bamboo is famous for fast growth and biomass accumulation, as well as high annual output for timber and bamboo shoots. These high outputs require high nutrient inputs to maintain and improve stand productivity. Soil nitrogen (N), phosphorus (P), and potassium (K) are [...] Read more.
Moso bamboo is famous for fast growth and biomass accumulation, as well as high annual output for timber and bamboo shoots. These high outputs require high nutrient inputs to maintain and improve stand productivity. Soil nitrogen (N), phosphorus (P), and potassium (K) are important macronutrients for plant growth and productivity. Due to high variability of soils, analysing spatial patterns of soil N, P, and K stocks is necessary for scientific nutrient management of Moso bamboo forests. In this study, soils were sampled from 138 locations across Yong’an City and ordinary kriging was applied for spatial interpolation of soil N, P, and K stocks within 0–60 cm. The nugget-to-sill ratio suggested a strong spatial dependence for soil N stock and a moderate spatial dependence for soil P and K stocks, indicating that soil N stock was mainly controlled by intrinsic factors while soil P and K stocks were controlled by both intrinsic and extrinsic factors. Different spatial patterns were observed for soil N, P, and K stocks across the study area, indicating that fertilizations with different ratios of N:P:K should be applied for different sites to maintain and improve stand productivity. The total soil N, P, and K stocks within 0–60 cm were 0.624, 0.020, and 0.583 Tg, respectively, indicating soils were important pools for N, P, and K. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

2479 KiB  
Article
Growth Characteristics of Ectomycorrhizal Seedlings of Quercus glauca, Quercus salicina, Quercus myrsinaefolia, and Castanopsis cuspidata Planted in Calcareous Soil
by Masazumi Kayama and Takashi Yamanaka
Forests 2016, 7(11), 266; https://doi.org/10.3390/f7110266 - 5 Nov 2016
Cited by 9 | Viewed by 5705
Abstract
To verify the acclimation capacity of evergreen Fagaceae species on calcareous soil, we compared ecophysiological traits between Quercus glauca Thunb., Q. salicina Blume, Q. myrsinaefolia Blume, and Castanopsis cuspidata (Thunb.) Schottky as typical woody species from southwestern Japan. We also examined the inoculation [...] Read more.
To verify the acclimation capacity of evergreen Fagaceae species on calcareous soil, we compared ecophysiological traits between Quercus glauca Thunb., Q. salicina Blume, Q. myrsinaefolia Blume, and Castanopsis cuspidata (Thunb.) Schottky as typical woody species from southwestern Japan. We also examined the inoculation effects of the ectomycorrhizal (ECM) fungi Astraeus hygrometricus and Scleroderma citrinum, and planted seedlings in calcareous soil collected from a limestone quarry. We measured growth, ectomycorrhizal colonization, photosynthetic rate, and concentrations of nutrients in plant organs for A. hygrometricus-inoculated, S. citrinum-inoculated, and non-ECM seedlings. Six months after planting on calcareous soil, seedlings of the three Quercus species inoculated with A. hygrometricus were larger than non-ECM seedlings, especially Q. salicina, which showed the greatest increase in dry mass. The dry mass of C. cuspidata seedlings was inferior to that of the three Quercus species. In the nutrient-uptake analysis, phosphorus, manganese, and iron uptakes were suppressed in calcareous soil for each Fagaceae species. However, seedlings of Fagaceae species that showed better growth had increased concentrations of phosphorus in roots. We concluded that seedlings of Q. salicina and Q. glauca inoculated with A. hygrometricus were best suited to calcareous soil and were considered as useful species for the reforestation in limestone quarries. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

3144 KiB  
Article
Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest
by D. Jean Lodge, Dirk Winter, Grizelle González and Naomi Clum
Forests 2016, 7(11), 264; https://doi.org/10.3390/f7110264 - 4 Nov 2016
Cited by 16 | Viewed by 6211
Abstract
Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely [...] Read more.
Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989) and Georges (1998) three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998), at all sampling times and at both depths (0–10 and 10–20 cm). Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05). Microbial biomass C varied significantly among seasons but differences between positions (under vs. away) were only suggestive. Microbial C was correlated with soil N (R = 0.35). Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Graphical abstract

2038 KiB  
Article
Soil Elements Influencing Community Structure in an Old-Growth Forest in Northeastern China
by Wei Xu, Minhui Hao, Juan Wang, Chunyu Zhang, Xiuhai Zhao and Klaus Von Gadow
Forests 2016, 7(8), 159; https://doi.org/10.3390/f7080159 - 28 Jul 2016
Cited by 3 | Viewed by 4655
Abstract
This study uses detailed soil and vegetation data collected in a 30-ha old-growth broad-leaved Korean pine forest to study the effect of soil properties on tree community structures. Spatial distribution patterns are simulated using a homogeneous Poisson process (HomP) and a homogeneous Thomas [...] Read more.
This study uses detailed soil and vegetation data collected in a 30-ha old-growth broad-leaved Korean pine forest to study the effect of soil properties on tree community structures. Spatial distribution patterns are simulated using a homogeneous Poisson process (HomP) and a homogeneous Thomas process (HomT). The simulated distributions are compared with the observed ones to explore correlations between certain tree species and several soil elements. The HomP model shows that all tested tree species are significantly correlated with at least one principal component in the upper-layer soil elements. The HomT model shows that only 36.4% of tree species are significantly correlated with the principal component of at least one upper-layer soil element. This result shows that the impact of dispersal limitation is greater than impact of environmental heterogeneity on species spatial distributions. The spatial autocorrelation of species induced by the dispersal limitation will largely conceal the plant-soil relationships caused by the heterogeneity of soil elements. An additional analysis shows that the elements in the upper soil layer which have the greatest impact on community niche structure are Pb, total phosphorus (TP), total nitrogen (TN), Cu, Cr, Zn and available nitrogen (AN). The corresponding elements in the lower soil layers are Pb, TP, Cu, organic carbon (OC), Mn, total potassium (TK) and AN. Different species seem to be complementary regarding the demands on the available soil resources. The results of this study show that the tree species in the different growth groups have different habitat preferences. Compared with subcanopy and shrub species, the canopy species have more significant correlations with the soil elements. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Graphical abstract

Review

Jump to: Research

3206 KiB  
Review
Grand Fir Nutrient Management in the Inland Northwestern USA
by Dennis R. Parent and Mark D. Coleman
Forests 2016, 7(11), 261; https://doi.org/10.3390/f7110261 - 4 Nov 2016
Cited by 3 | Viewed by 5598
Abstract
Grand fir (Abies grandis (Douglas ex D. Don) Lindley) is widely distributed in the moist forests of the Inland Northwest. It has high potential productivity, its growth being nearly equal to western white pine, the most productive species in the region. There [...] Read more.
Grand fir (Abies grandis (Douglas ex D. Don) Lindley) is widely distributed in the moist forests of the Inland Northwest. It has high potential productivity, its growth being nearly equal to western white pine, the most productive species in the region. There are large standing volumes of grand fir in the region. Nutritionally, the species has higher foliage cation concentrations than associated conifers, especially potassium (K) and calcium (Ca). In contrast, it has lower nitrogen (N) foliage concentrations, which creates favorable nutrient balance on N-limited sites. Despite concentration differences, grand fir stores proportionally more nutrients per tree than associated species because of greater crown biomass. Although few fertilization trials have examined grand fir specifically, its response is inferred from its occurrence in many monitored mixed conifer stands. Fertilization trials including grand fir either as a major or minor component show that it has a strong diameter and height growth response ranging from 15% to 50% depending in part on site moisture availability and soil geology. Grand fir tends to have a longer response duration than other inland conifers. When executed concurrently with thinning, fertilization often increases the total response. Late rotation application of N provides solid investment returns in carefully selected stands. Although there are still challenges with the post-fertilization effects on tree mortality, grand fir will continue to be an important species with good economic values and beneficial responses to fertilization and nutrient management. Full article
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
Show Figures

Figure 1

Back to TopTop