Privacy and Security Issues with Edge Learning in IoT Systems

A special issue of Future Internet (ISSN 1999-5903). This special issue belongs to the section "Cybersecurity".

Deadline for manuscript submissions: 20 November 2024 | Viewed by 2617

Special Issue Editors


E-Mail Website
Guest Editor
Department of Information Engineering and Computer Science, Feng Chia University, Taichung 401723, Taiwan
Interests: cryptography; IoT application and security; m-commerce application and security

E-Mail Website
Guest Editor
Department of Information Engineering and Computer Science, Feng Chia University, Taichung 401723, Taiwan
Interests: information security and wireless communications

Special Issue Information

Dear Colleagues,

Edge learning represents a frontier in artificial intelligence innovation, decomposing centralized storage and computing into distributed solutions. It is an emerging approach for training models across distributed clients. However, the susceptibility of edge learning, including decentralized deep learning, to tampering and manipulation underscores the need for addressing vulnerabilities in Internet of Things (IoT) systems to uphold data privacy and security.

This Special Issue presents an exceptional opportunity for sharing scientific insights and disseminating research findings across various communities. It will delve into emerging trends and methodologies for edge learning in the IoT, showcasing innovative solutions that underscore the significance of discoveries for researchers.

Dr. Kuo-Yu Tsai
Dr. Kuo Chung-Wei
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Future Internet is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • edge learning
  • data privacy
  • security threats
  • defense mechanism
  • side-channel attack
  • threat model
  • Internet of Things application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Other

28 pages, 3973 KiB  
Systematic Review
Edge Computing in Healthcare: Innovations, Opportunities, and Challenges
by Alexandru Rancea, Ionut Anghel and Tudor Cioara
Future Internet 2024, 16(9), 329; https://doi.org/10.3390/fi16090329 - 10 Sep 2024
Abstract
Edge computing promising a vision of processing data close to its generation point, reducing latency and bandwidth usage compared with traditional cloud computing architectures, has attracted significant attention lately. The integration of edge computing in modern systems takes advantage of Internet of Things [...] Read more.
Edge computing promising a vision of processing data close to its generation point, reducing latency and bandwidth usage compared with traditional cloud computing architectures, has attracted significant attention lately. The integration of edge computing in modern systems takes advantage of Internet of Things (IoT) devices and can potentially improve the systems’ performance, scalability, privacy, and security with applications in different domains. In the healthcare domain, modern IoT devices can nowadays be used to gather vital parameters and information that can be fed to edge Artificial Intelligence (AI) techniques able to offer precious insights and support to healthcare professionals. However, issues regarding data privacy and security, AI optimization, and computational offloading at the edge pose challenges to the adoption of edge AI. This paper aims to explore the current state of the art of edge AI in healthcare by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and analyzing more than 70 Web of Science articles. We have defined the relevant research questions, clear inclusion and exclusion criteria, and classified the research works in three main directions: privacy and security, AI-based optimization methods, and edge offloading techniques. The findings highlight the many advantages of integrating edge computing in a wide range of healthcare use cases requiring data privacy and security, near real-time decision-making, and efficient communication links, with the potential to transform future healthcare services and eHealth applications. However, further research is needed to enforce new security-preserving methods and for better orchestrating and coordinating the load in distributed and decentralized scenarios. Full article
(This article belongs to the Special Issue Privacy and Security Issues with Edge Learning in IoT Systems)
Show Figures

Figure 1

Back to TopTop