Advances in Protected Vegetable Cultivation

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Vegetable Production Systems".

Deadline for manuscript submissions: closed (15 February 2023) | Viewed by 23540

Special Issue Editor


E-Mail Website
Guest Editor
College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
Interests: protected vegetable cultivation; vegetable stress physiology and molecular biology; vegetable grafting

Special Issue Information

Dear Colleagues,

Vegetable cultivation can be divided into protected vegetable cultivation or facility vegetable cultivation and open field vegetable cultivation. Protected vegetable cultivation depends on horticultural facilities such as greenhouse, solar greenhouse, plastic tunnel, plant factory, etc., and it frees vegetable production from the constraints of natural conditions to a certain extent and can produce vegetables all year round. The area of protected vegetable cultivation is increasing steadily. In recent years, significant progress has been made in protected vegetable cultivation, including greenhouse structure and energy saving, greenhouse environment precision control technology, soilless cultivation techniques, water and fertilizer precision control, overcoming soil continuous cropping obstacles, plant factory, vertical farming, etc. The innovation research has laid a foundation for the sustainable development of protected vegetables.

This Special Issue of Horticulturae will provide a current overview of the most significant research carried out in the field of protected vegetable cultivation. You are warmly invited to submit papers (review articles and research results) that highlight your work on the following aspects: greenhouse structure and energy saving; greenhouse environment precision control; substrate and hydroponic culture; protected vegetable growth model; water and fertilizer supply on vegetable yield and quality; vegetable stress physiology; soil continuous cropping obstacles control; plant factory; vertical farming; vegetable intelligent production.

Prof. Dr. Zhilong Bie
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • protected vegetable cultivation
  • soilless culture
  • protected vegetable growth model
  • vegetable stress physiology
  • fruit quality control
  • soil continuous cropping obstacle control
  • plant factory
  • greenhouse environment precision control
  • vegetable intelligent production

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 22720 KiB  
Article
Effective Training Methods for Cucumber Production in Newly Developed Nutrient Film Technique Hydroponic System
by Nethone Samba, Osamu Nunomura, Akimasa Nakano and Satoru Tsukagoshi
Horticulturae 2023, 9(4), 478; https://doi.org/10.3390/horticulturae9040478 - 11 Apr 2023
Cited by 4 | Viewed by 3432
Abstract
Cucumber (Cucumis sativus L., cv. “Nina Z”) plants grafted onto squash (Cucurbita maxima, cv. “Yu Yu Ikki”) were grown in a greenhouse using the newly developed nutrient film technique (NFT) hydroponic system “Kappa land” (Mitsubishi aqua solutions Co., Ltd., Tokyo, [...] Read more.
Cucumber (Cucumis sativus L., cv. “Nina Z”) plants grafted onto squash (Cucurbita maxima, cv. “Yu Yu Ikki”) were grown in a greenhouse using the newly developed nutrient film technique (NFT) hydroponic system “Kappa land” (Mitsubishi aqua solutions Co., Ltd., Tokyo, Japan), from February to June 2022. The growth and development of cucumbers were examined under two different training methods: Lowering training (LT) and Pinching training (PT). Data collected were related to water and nutrient consumption, plant growth and development parameters, and the workload of the main activities. The results showed that plants grown under the LT recorded significantly higher total stem length (10.9 m) and number of nodes (133). In addition, from 21 April to 19 May, the leaf area index was significantly higher in the LT treatment. The highest total yield (15.4 kg m−2) and marketable yield per unit area (13.8 kg m−2) were recorded in the LT treatment. Regarding fruit growth, the fruits took 14 and 19 days to reach the standard harvest weight in the PT and LT treatments, respectively. In addition, the fruits were more straight in the PT treatment. The water use efficiency was not significantly different between the two treatments. However, the nutrient use efficiency was significantly higher in the PT treatment because plants produced more vegetative organs in the LT treatment instead of fruits. The work for removing old leaves and harvesting fruits was simplified in the LT treatment. The LT method can be effective for the automation of old leaf removal and fruit picking by the robot in the future. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

30 pages, 3796 KiB  
Article
Research Trends on Greenhouse Engineering Using a Science Mapping Approach
by Ileana Blanco, Andrea Luvisi, Luigi De Bellis, Evelia Schettini, Giuliano Vox and Giacomo Scarascia Mugnozza
Horticulturae 2022, 8(9), 833; https://doi.org/10.3390/horticulturae8090833 - 9 Sep 2022
Cited by 7 | Viewed by 4425
Abstract
Horticultural protected cultivation has spread throughout the world as it has proven to be extremely effective. In recent years, the greenhouse engineering research field has become one of the main research topics within greenhouse farming. The main objectives of the current study were [...] Read more.
Horticultural protected cultivation has spread throughout the world as it has proven to be extremely effective. In recent years, the greenhouse engineering research field has become one of the main research topics within greenhouse farming. The main objectives of the current study were to identify the major research topics and their trends during the last four decades by analyzing the co-occurrence network of keywords associated with greenhouse engineering publications. A total of 3804 pertinent documents published, in 1981–2021, were analyzed and discussed. China, the United States, Spain, Italy and the Netherlands have been the most active countries with more than 36% of the relevant literature. The keyword cluster analysis suggested the presence of five principal research topics: energy management and storage; monitoring and control of greenhouse climate parameters; automation of greenhouse operations through the internet of things (IoT) and wireless sensor network (WSN) applications; greenhouse covering materials and microclimate optimization in relation to plant growth; structural and functional design for improving greenhouse stability, ventilation and microclimate. Recent research trends are focused on real-time monitoring and automatic control systems based on the IoT and WSN technologies, multi-objective optimization approaches for greenhouse climate control, efficient artificial lighting and sustainable greenhouse crop cultivation using renewable energy. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

16 pages, 5407 KiB  
Article
Comprehensive Evaluation of Low Temperature and Salt Tolerance in Grafted and Rootstock Seedlings Combined with Yield and Quality of Grafted Tomato
by Shijie Fu, Jiaqian Chen, Xiaolei Wu, Hongbo Gao and Guiyun Lü
Horticulturae 2022, 8(7), 595; https://doi.org/10.3390/horticulturae8070595 - 1 Jul 2022
Cited by 6 | Viewed by 2146
Abstract
Environmental stress, especially in the form of low temperatures and salinity, has becomethe main limiting factor affecting the yield and quality of tomatoes in greenhouse production in China. Grafting, as an effective and sustainable strategy for improving plant stress tolerance, is closely related [...] Read more.
Environmental stress, especially in the form of low temperatures and salinity, has becomethe main limiting factor affecting the yield and quality of tomatoes in greenhouse production in China. Grafting, as an effective and sustainable strategy for improving plant stress tolerance, is closely related to rootstock properties and scion affinity. Here, 15 commercial rootstock genotypes were collected to investigate the differences in low temperatures and salt tolerance of rootstocks and grafted tomato seedlings in parallel, as well as well as the effect of grafting on the yield and quality of tomato. The results indicated that there were differences among rootstocks, and the resistance of grafted seedlings mainly depended on the characteristics of the rootstocks. We also found that the resistance of grafted seedlings was affected by the affinity between the scion and rootstock. Genotypes 6, 7, 11, and 14 showed advantages over the other genotypes in seedling growth, based on the fresh weight of the plants, the seedling index, and the root-shoot ratio. Genotypes 2, 7, 11, and 14 had greater total root lengths and higher numbers of root tips than other genotypes. These results showed that the significant increase in growth in the grafted tomato seedlings might have been attributable to the vigorous roots of the rootstocks. Genotypes 4, 7, 11, and 13 showed advantages with respect to low temperature stress, whereas genotypes 7, 11, 12, and 13 showed advantages with respect to salt stress. The salt tolerance of grafted tomato seedlings was influenced by both scion affinity and rootstock characteristics and was decreased by grafting. The highest yields were obtained from the grafted plants of genotypes 7 and 11, whose yields were 17.2% and 14.6% higher, respectively, than those of the control group. The rootstock genotype did not affect the fruit quality parameters, such as soluble protein content, titratable acidity, and total soluble solids content, and in most cases, the lycopene and ascorbic acid contents of the fruit increased. After considering the results pertaining to the stress tolerance of rootstocks in combination with fruit yield and quality, genotypes 7 and 11 were selected as potentially suitable tomato rootstock varieties for further large-scale applications. These results provide a new perspective for the study of rootstock characteristics and an important reference for grafted tomato cultivation in greenhouse production. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Molecular Cloning of a TCHQD Class Glutathione S-Transferase and GST Function in Response to GABA Induction of Melon Seedlings under Root Hypoxic Stress
by Jingrui Li, Chunyan Wang, Xiaolei Wu, Binbin Gong, Guiyun Lü and Hongbo Gao
Horticulturae 2022, 8(5), 446; https://doi.org/10.3390/horticulturae8050446 - 17 May 2022
Viewed by 2114
Abstract
Glutathione-S-transferase (GST), a versatile enzyme that occurs widely in plants, plays a key role in plant resistance to environmental stresses. Previous results have demonstrated that GST proteins are involved in alleviating root hypoxic injury caused by gamma-aminobutyric acid (GABA); however, the induction mechanism [...] Read more.
Glutathione-S-transferase (GST), a versatile enzyme that occurs widely in plants, plays a key role in plant resistance to environmental stresses. Previous results have demonstrated that GST proteins are involved in alleviating root hypoxic injury caused by gamma-aminobutyric acid (GABA); however, the induction mechanism of the GST gene in the melon under root hypoxic stress and its functional mechanisms remain unclear. In this study, based on gene cloning and bioinformatics analysis, GST gene expression and activity and glutathione (GSH) content were assessed under root hypoxic and normoxic conditions with or without GABA. The results showed that the CmGST locus includes an 804 bp gene sequence that encodes 267 amino acids. The sequence was highly similar to those of other plant TCHQD GSTs, and the highest value (94%) corresponded to Cucumis sativus. Real-time PCR results showed that the CmGST gene was induced by root hypoxic stress and GABA, and this induction was accompanied by increased GST activity and GSH content. Root hypoxic stress significantly upregulated CmGST expression in melon roots (0.5–6 d), stems, and leaves (0.5–4 d), and GST activity and GSH content were also significantly increased. Exogenous GABA treatment upregulated CmGST gene expression, GST activity, and GSH content, particularly under root hypoxic conditions. As a result, CmGST expression in GABA-treated roots and leaves at 0.5–4 d and stems at 0.5–6 d was significantly higher than that under root hypoxic stress alone. This study provides evidence that the TCHQD CmGST may play a vital role in how GABA increases melon hypoxia tolerance by upregulating gene expression and improving metabolism. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

14 pages, 1113 KiB  
Article
Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato
by Tao Lu, Hongjun Yu, Tanyu Wang, Taoyue Zhang, Chenhua Shi and Weijie Jiang
Horticulturae 2022, 8(5), 378; https://doi.org/10.3390/horticulturae8050378 - 26 Apr 2022
Cited by 5 | Viewed by 3890
Abstract
Soilless cultivation is an important alternative to traditional agriculture and facilitates harvest by allowing for the precise control of plant nutrients to maximize the vegetable production of uniform fruits. Nutrient solution concentration is a critical factor affecting nutrient supply in soilless cultivation. Although [...] Read more.
Soilless cultivation is an important alternative to traditional agriculture and facilitates harvest by allowing for the precise control of plant nutrients to maximize the vegetable production of uniform fruits. Nutrient solution concentration is a critical factor affecting nutrient supply in soilless cultivation. Although some nutrient solution concentrations throughout the growth cycle for tomatoes have been developed, there are limited studies on nutrient solution concentrations at different phenological stages. Hence, we studied the effects of nutrient solution concentrations in different growth stages on the physiology, yield and fruit quality of cherry tomatoes with a previously developed nutrient solution formulation. The whole growth cycle of the tomato was divided into three stages which were irrigated with a nutrient solution with different electrical conductivities (ECs). A total of five treatments were set: CK (EC was 3.0 ms·cm−1 for the 1st–3rd stage), T1 (EC was 1.5 ms·cm−1 for the 1st stage, 3.0 ms·cm−1 for the 2nd–3rd stage), T2 (EC was 1.5 ms·cm−1 for the 1st stage, 3.0 ms·cm−1 for the 2nd stage, 4.5 ms·cm−1 for the 3rd stage ), T3 (EC was 1.5 ms·cm−1 for the 1st–2nd stage, 3.0 ms·cm−1 for the 3rd stage), and T4 (EC was 1.5 ms·cm−1 for the 1st stage, 4.5 ms·cm−1 for the 2nd–3rd stage). The results showed that the tomato plants treated with T2 and T4 had the strongest growth (with the highest plant height and leaf formation) as well as the best leaf photosynthetic performance (the chlorophyll content and the net photosynthetic rate were significantly increased). Additionally, the use of T2 and T4 significantly improved cherry tomato fruit quality as reflected by the significant promotion of total soluble solids by 9.1% and 9.8%, respectively, as well as by the improvement of maturity by 12.9% and 13.7%, respectively. Additionally, the yields for treatments T2 and T4 were increased by 7.3% and 13.4%, respectively, which was mainly due to the increase in single fruit weight. More importantly, nutrient solution EC management improved fertilizer use efficiency: the partial fertilizer productivity of T1, T2, and T4 was increased by 2%, 7% and 14%, respectively, while that of T3 was reduced by 7%. A comprehensive comparison showed that the ranking of the effect on production was T4 > T2 > T1 > CK > T3. Our results suggest that the regulation of EC in different growth stages affects the growth and yield characteristics of cherry tomatoes. This study may provide some references for further research to adjust the concentration of nutrient solutions to improve the utilization rate of fertilizer and fruit quality. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

13 pages, 5100 KiB  
Article
Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System
by Yuta Ohashi, Misato Murai, Yasuhiro Ishigami and Eiji Goto
Horticulturae 2022, 8(1), 60; https://doi.org/10.3390/horticulturae8010060 - 9 Jan 2022
Cited by 5 | Viewed by 2129
Abstract
The objective of this study was to investigate the growth and light-intercepting characteristics of tomatoes when movable benches are used in their cultivation. We cultivated tomatoes in a greenhouse (168 m2) during summer (9 July–9 September 2018) under different furrow distances [...] Read more.
The objective of this study was to investigate the growth and light-intercepting characteristics of tomatoes when movable benches are used in their cultivation. We cultivated tomatoes in a greenhouse (168 m2) during summer (9 July–9 September 2018) under different furrow distances (F1.0 = 1.0 m and F1.6 = 1.6 m) and movable benches (M indicates that the furrow distance = 0.4–0.8 m). Compared to the other treatments, when the movable bench was used to the change furrow distance depending on the plant growth stage (M treatment), the percentage of canopy light interception increased to ~90% at the early stage of plant growth (~20 days after transplanting). The percentage of canopy light interception for different treatments increased in the order of M > F1.0 > F1.6, and it increased towards the end of cultivation. In addition, the yield per unit area exhibited the same trend. Therefore, the solar radiation inside a greenhouse can be efficiently intercepted by plants when movable benches are used. This indicated that it was possible to increase plant yield per unit area using movable benches in plant cultivation. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

11 pages, 892 KiB  
Article
Light Intensity Modulates the Accumulation of Carbohydrates, Antioxidant Enzymes and Production of Iceberg Lettuce under Tropical Conditions
by Eduardo Santana Aires, Carlos Alberto Aragão, Bárbara França Dantas, João Domingos Rodrigues and Elizabeth Orika Ono
Horticulturae 2021, 7(12), 553; https://doi.org/10.3390/horticulturae7120553 - 5 Dec 2021
Cited by 2 | Viewed by 2206
Abstract
High solar radiation in tropical regions can affect the development, physiology, and biochemistry of plants. Our aim with this research was to evaluate the biochemical responses and production of iceberg lettuce cultivars under environments with different shadings. An experiment under field conditions was [...] Read more.
High solar radiation in tropical regions can affect the development, physiology, and biochemistry of plants. Our aim with this research was to evaluate the biochemical responses and production of iceberg lettuce cultivars under environments with different shadings. An experiment under field conditions was installed in a 4 × 4 factorial scheme. Four cultivars of iceberg lettuce (Great Lakes, Winslow, Delicia, and Balsamo) and four environments with different shadings (three types of shading screens: red, ChromatiNet®, and black; and treatment under the full sun) were evaluated. Forty-five days after transplanting, the plants were harvested, and the biomass was weighed to obtain the fresh consumable part (FCP) and the biochemical parameters: total soluble sugar (TSS), reducing sugar (RS), and the activity of SOD, CAT, and POD. We found that shading modulates biochemical and productive responses of iceberg lettuce, and the main microclimatic factor related to these responses was solar radiation. We observed a negative correlation between RS and FCP. The solar radiation between 16 and 18 MJ·m−2·day−1, observed in the environments with a black screen and ChromatiNet®, promoted the highest activity of the SOD enzyme and average levels of TSS and RS, providing higher FCP of the cultivars Delícia and Balsamo in high temperatures period. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

16 pages, 2567 KiB  
Article
Decoupling of P from C, N, and K Elements in Cucumber Leaves Caused by Nutrient Imbalance under a Greenhouse Continuous Cropping System
by Shiwei Zheng, Ting Bian, Shuang Wang, Xiaolan Zhang, Xiao Li, Yongyong Zhang, Hongdan Fu and Zhouping Sun
Horticulturae 2021, 7(12), 528; https://doi.org/10.3390/horticulturae7120528 - 29 Nov 2021
Cited by 4 | Viewed by 1635
Abstract
There is insufficient information regarding the stoichiometric variation and coupling status of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) in the leaves of nutrient-enriched greenhouse agroecosystems with increasing planting time. Therefore, we assessed the variation in elemental stoichiometry ratios in soil [...] Read more.
There is insufficient information regarding the stoichiometric variation and coupling status of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) in the leaves of nutrient-enriched greenhouse agroecosystems with increasing planting time. Therefore, we assessed the variation in elemental stoichiometry ratios in soil and cucumber (Cucumis sativus L.) leaves, and the coupling status of elemental utilization in the leaves under continuous cropping systems using natural (only soil; i.e., control soil, CO) and artificial (soil + straw + chicken + urea; i.e., straw mixture soil, ST) soil via monitoring studies for 11 years in a solar greenhouse. Soil organic C, total N, and total P concentrations increased by 63.4%, 72.7%, and 144.3% in the CO, respectively, after 11 years of cultivation (compared to the first year), and by 18.1%, 24.3%, and 117.7% in the ST under continuous cropping conditions, respectively. Total K concentrations remained unchanged in both soils. Moreover, the availability of these soil elements increased to different degrees in both soils after 11 years of planting. Additionally, the leaf P concentration increased by 9.8% in the CO, while leaf N and K concentrations did not change, suggesting decoupling of P utilization from that of N and K in leaves under a continuous cropping system. These findings suggest that imbalanced soil nutrients under continuous cropping conditions results in decoupling of P from N and K in the utilization of leaf nutrients. Full article
(This article belongs to the Special Issue Advances in Protected Vegetable Cultivation)
Show Figures

Figure 1

Back to TopTop