ijms-logo

Journal Browser

Journal Browser

Extreme Biocatalysts: From Basic Research to Biotechnological Applications 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (30 August 2024) | Viewed by 1611

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biotechnology, University of Verona, 37134 Verona, Italy
Interests: industrial enzymology; extremozymes; biocatalysis; biorefinery; biomass valorisation; enzymatic recycling of plastics; protein engineering; CRISPR-based applications; virus biotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issue “Extreme Biocatalysts: From Basic Research to Biotechnological Applications” (https://www.mdpi.com/journal/ijms/special_issues/Extreme_Biocatalysts).

Biocatalysts show remarkable features that are revolutionizing, among other areas, the chemical, energy, agricultural, and pharmaceutical industries. Indeed, their use can pave the way to the design and optimization of sustainable industrial processes, which are at the very foundation of a timely and urgently needed shift towards a circular economy. The use of isolated enzymes or whole-cell biocatalysts has broadened the plethora of possible applications, allowing for the performance of chemo- and regioselective reactions, which is a major holdback in the chemical industry. Despite their vast potential in biotechnological applications, biocatalysts are currently used only for a limited number of industrial processes. This is mainly due to the narrow ranges of enzymatic stability towards critical parameters, such as temperature, pH, pressure, salinity, water activity, etc. Microorganisms thriving under extreme environmental conditions (collectively known as extremophiles), as well as the enzymes derived from them (extremozymes), can be used to overcome the aforementioned limitations.

With this Special Issue, we aim to collect original research articles, review articles, and short communications dealing with the study of extreme biocatalysts (both isolated enzymes and whole-cell biocatalysts). We welcome fundamental studies investigating the molecular basis underpinning the unique features of extremozymes as well as reports about their exploitation for biotechnological applications (industrial, diagnostic, environmental, etc.). Topics of interest include, but are not limited to, the following:

  • Discovery of new extremozymes (including thermophilic, psychrophilic, acidophilic, alkalophilic, halophilic, and polyextremophilic enzymes).
  • Functional and/or structural characterization of extremozymes
  • Development of enzyme assays for discovery, screening, and characterization.
  • Protein engineering for the optimization of extremozymes’ catalytical features.
  • Bioprospecting of extremozymes.
  • Extremozyme cascades to produce fine and bulk chemicals.
  • Discovery, design, optimization, and/or exploitation of extreme whole-cell biocatalysts.
  • Extremophiles as factories of commodity and specialty enzymes.
  • Extreme biocatalysts for circular economy applications.

Dr. Salvatore Fusco
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • whole-cell biocatalysts
  • extremozymes
  • enzyme assays
  • protein engineering
  • extremophiles

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7200 KiB  
Article
Thermophilic Hemicellulases Secreted by Microbial Consortia Selected from an Anaerobic Digester
by Luca Bombardi, Marco Orlando, Martina Aulitto and Salvatore Fusco
Int. J. Mol. Sci. 2024, 25(18), 9887; https://doi.org/10.3390/ijms25189887 - 13 Sep 2024
Viewed by 540
Abstract
The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles [...] Read more.
The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles produce stable enzymes that retain activity under industrial conditions, presenting a promising approach for LCB conversion. This research focused on two microbial consortia (i.e., microbiomes) that were analyzed for enzyme production using a cheap medium, i.e., a mixture of spent mushroom substrate (SMS) and digestate. The secreted xylanolytic enzymes were characterized in terms of temperature and pH optima, thermal stability, and hydrolysis products from LCB-derived polysaccharides. These enzymes showed optimal activity aligning with common biorefinery conditions and outperformed a formulated enzyme mixture in thermostability tests in the digestate. Phylogenetic and genomic analyses highlighted the genetic diversity and metabolic potential of these microbiomes. Bacillus licheniformis was identified as a key species, with two distinct strains contributing to enzyme production. The presence of specific glycoside hydrolases involved in the cellulose and hemicellulose degradation underscores these consortia’s capacity for efficient LCB conversion. These findings highlight the potential of thermophilic microbiomes, isolated from an industrial environment, as a robust source of robust enzymes, paving the way for more sustainable and cost-effective bioconversion processes in biofuel and biochemical production and other biotechnological applications. Full article
Show Figures

Figure 1

20 pages, 8083 KiB  
Article
Biochemical and Structural Characterization of a Novel Psychrophilic Laccase (Multicopper Oxidase) Discovered from Oenococcus oeni 229 (ENOLAB 4002)
by Isidoro Olmeda, Francisco Paredes-Martínez, Ramón Sendra, Patricia Casino, Isabel Pardo and Sergi Ferrer
Int. J. Mol. Sci. 2024, 25(15), 8521; https://doi.org/10.3390/ijms25158521 - 5 Aug 2024
Viewed by 640
Abstract
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has [...] Read more.
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments. Full article
Show Figures

Figure 1

Back to TopTop