ijms-logo

Journal Browser

Journal Browser

Infectious Diseases: Focus on Molecular Mechanisms and Future Therapy

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 799

Special Issue Editor


E-Mail Website
Guest Editor
Department of Clinical Microbiology and Hygiene, Paracelsus Medical University, 5020 Salzburg, Austria
Interests: infectious disease epidemiology; infectious disease control and prevention; viral infection; epidemiology; public health

Special Issue Information

Dear Colleagues,

In spite of many advances in vaccines and antibiotics, infectious diseases remain a significant public health priority. Combating these looming and persistent threats requires a detailed understanding of the molecular and biological processes that underlie infection and disease. Applying fundamental techniques in molecular and cell biology to the study of infectious diseases, in turn, provides fundamental knowledge that guides the development of new therapies.

This Special Issue welcomes submissions on basic and applied research on infectious diseases, with a focus on molecular mechanisms, cell biology, disease carriers, detection methods, pathogenic mechanisms, and host immune responses. We would like to invite researchers to contribute original works or review articles with novel opinions and perspectives in these areas.

Dr. Jan Marco Kern
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • infectious diseases
  • molecular mechanisms
  • cell biology
  • pathogenic mechanism
  • dengue
  • malaria
  • leptospirosis
  • HIV
  • tuberculosis
  • cytokine
  • matrix protein
  • coagulation
  • sepsis
  • influenza

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3221 KiB  
Article
Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System
by Indah Permata Sari, Christopher Llynard D. Ortiz, Lee-Wei Yang, Ming-Hsiang Chen, Ming-Der Perng and Tzong-Yuan Wu
Int. J. Mol. Sci. 2024, 25(16), 9102; https://doi.org/10.3390/ijms25169102 - 22 Aug 2024
Viewed by 430
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a [...] Read more.
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin’s interaction with NiV-G’s central hole and EphrinB2’s G-H loop, which could be the possible reason for its fusion inhibitory activity. Full article
(This article belongs to the Special Issue Infectious Diseases: Focus on Molecular Mechanisms and Future Therapy)
Show Figures

Figure 1

Back to TopTop