Optimizing Performance: Training Strategies to Improve Strength, Speed, Power, and Endurance

A special issue of Journal of Functional Morphology and Kinesiology (ISSN 2411-5142). This special issue belongs to the section "Athletic Training and Human Performance".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 21083

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
Interests: strength training; neuromuscular; talent selection; resistance training; speed and sprint performance
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

I have the pleasure of inviting researchers to contribute to this Special Issue of JFMK, which aims to explore diverse training strategies for enhancing athletic performance. Specific focus will be given to improving athletes’ strength, speed, power, and endurance. We seek to promote innovative work and effective methodologies to optimize athletic capabilities. Additionally, we are interested in exploring new devices and sensors that assist coaches in improving these qualities.

We welcome submissions exploring, but not limited to, the following topics:

  • Effective training methods for developing muscular strength and power;
  • Innovative approaches for improving running speed and sprint performance;
  • The integration of resistance training, plyometrics, and other modalities for athletic performance enhancement;
  • Endurance training and methods to improve aerobic fitness for overall performance optimization;
  • Advancements in exercise physiology, biomechanics, and sports science related to performance optimization.

Dr. Athanasios Tsoukos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Morphology and Kinesiology is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • muscular strength
  • muscular power
  • resistance training
  • free weights
  • weight machines
  • bodyweight exercises
  • plyometric training
  • Olympic weightlifting
  • complex training
  • endurance training

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

10 pages, 391 KB  
Article
Kettlebell Training vs. Plyometric Training: A Comparison of Jump Performance in Volleyball and Basketball Athletes
by Tom Brandt, Lucas Koch, Maximilian Herber, David Ohlendorf and Annette Schmidt
J. Funct. Morphol. Kinesiol. 2025, 10(4), 395; https://doi.org/10.3390/jfmk10040395 - 12 Oct 2025
Viewed by 220
Abstract
Objectives: Plyometric training is a well-established method for enhancing jump performance in basketball and volleyball athletes but has certain limitations. Kettlebell training may provide a viable alternative as it mimics key biomechanical aspects of jumping, like explosive hip and knee extension during a [...] Read more.
Objectives: Plyometric training is a well-established method for enhancing jump performance in basketball and volleyball athletes but has certain limitations. Kettlebell training may provide a viable alternative as it mimics key biomechanical aspects of jumping, like explosive hip and knee extension during a ballistic hip–hinge pattern. Because evidence remains limited, this study aimed to compare the effects of both training methods. Methods: Thirty-eight volleyball and basketball club athletes (age: 22 (4.3); male = 29, female = 9) completed this study. Countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), body fat percentage (FM), and muscle mass percentage (MM) were assessed pre- and post-intervention. The participants were assigned to one of three groups: a kettlebell training group (KbG), a plyometric training group (PG), or a control group (CG). Both the KbG and PG completed two supervised 25-min training sessions per week for six weeks, while the CG did not engage in any additional training intervention. The level of significance was set at p ≤ 0.05. Results: There were no significant differences in CMJ, SJ, and DJ performance between the groups before the intervention. Significant differences in change between the groups from pre- to post-test were found for the SJ (p = 0.006), but not for the DJ (p = 0.06), CMJ (p = 0.26), FM (p = 0.9), and MM (p = 0.55). Pairwise comparisons revealed significantly greater positive change in the KbG than in the CG for the SJ (p = 0.003) and DJ (p = 0.03). Within-group analyses showed significant improvements in the KbG for the CMJ (p = 0.04), SJ (p < 0.001), and DJ (p = 0.003) performance, whereas FM and MM did not change. Within the PG and CG, no significant change occurred. Conclusions: Kettlebell training effectively improved jump performance and may therefore serve as a valuable component within strength and conditioning programs for basketball and volleyball athletes. Full article
Show Figures

Figure 1

19 pages, 506 KB  
Article
The Mental Fatigue Induced by Physical, Cognitive and Combined Effort in Amateur Soccer Players: A Comparative Study Using EEG
by Ana Rubio-Morales, Jesús Díaz-García, Marika Berchicci, Jesús Morenas-Martín, Vicente Luis del Campo and Tomás García-Calvo
J. Funct. Morphol. Kinesiol. 2025, 10(4), 373; https://doi.org/10.3390/jfmk10040373 - 27 Sep 2025
Viewed by 583
Abstract
Objective: Mental fatigue (MF) worsens soccer performance. Further knowledge is needed to understand MF’s effects on soccer players and its underlying mechanisms. Our aim was to analyze the subjective, objective, and neural MF-related outcomes induced by different type of tasks. Methods: A randomized [...] Read more.
Objective: Mental fatigue (MF) worsens soccer performance. Further knowledge is needed to understand MF’s effects on soccer players and its underlying mechanisms. Our aim was to analyze the subjective, objective, and neural MF-related outcomes induced by different type of tasks. Methods: A randomized crossover experimental design with repeated measures was used. Thirteen amateur soccer players (Mage = 23 ± 5.43) completed three conditions: cognitive (30 min. Stroop.), physical (30 min. cycling), or combined (30 min. Stroop while cycling). Ratings of mental fatigue (measured via the Visual Analogue Scale), electroencephalographical signals (electroencephalography), and psychomotor performance (Brief-Psychomotor Vigilance Test) were measured pre- and post-condition. Soccer-related decision-making (TacticUP® test) was assessed post-condition. Results: Linear Mixed Models analysis revealed increments in perceived mental fatigue in all conditions, especially cognitive (p = 0.004) and combined (p < 0.0001) conditions. Psychomotor performance worsened, especially for cognitive (p = 0.039) and combined (p = 0.009) conditions. The Individual Alpha Peak Frequency was lower after the cognitive task (p = 0.040) and compared with the physical task (p = 0.021). The Alpha midline power increased after the cognitive task in the central-frontal (p = 0.047) and central-posterior brain regions (p = 0.043). Conclusions: Cognitive and combined conditions were found to be more mentally demanding and fatiguing than single physical tasks. This was also reflected by an impaired reaction time. Based on the neural activity recorded, the performance impairments caused by mental fatigue were caused by reduced brain readiness (i.e., a lower Alpha Peak Frequency). However, non-significant changes were found in soccer-related decision-making. Coaches should consider the type of training tasks they recommend in light of their different effects on mental fatigue and performance. Full article
Show Figures

Figure 1

25 pages, 2173 KB  
Article
EEG–Metabolic Coupling and Time Limit at V˙O2max During Constant-Load Exercise
by Luc Poinsard, Christian Berthomier, Michel Clémençon, Marie Brandewinder, Slim Essid, Cécilia Damon, François Rigaud, Alexis Bénichoux, Emmanuel Maby, Lesly Fornoni, Patrick Bouchet, Pascal Van Beers, Bertrand Massot, Patrice Revol, Thomas Creveaux, Christian Collet, Jérémie Mattout, Vincent Pialoux and Véronique Billat
J. Funct. Morphol. Kinesiol. 2025, 10(4), 369; https://doi.org/10.3390/jfmk10040369 - 26 Sep 2025
Viewed by 261
Abstract
Background: Exercise duration at maximum oxygen uptake (V˙O2max) appears to be influenced not only by metabolic factors but also by the interplay between brain dynamics and ventilatory regulation. This study examined how cortical activity, assessed via electroencephalography (EEG), [...] Read more.
Background: Exercise duration at maximum oxygen uptake (V˙O2max) appears to be influenced not only by metabolic factors but also by the interplay between brain dynamics and ventilatory regulation. This study examined how cortical activity, assessed via electroencephalography (EEG), relates to performance and acute fatigue regulation during a constant-load cycling test. We hypothesized that oscillatory activity in the theta, alpha, and beta bands would be associated with ventilatory coordination and endurance capacity. Methods: Thirty trained participants performed a cycling test to exhaustion at 90% maximal aerobic power. EEG and gas exchange were continuously recorded; ratings of perceived exertion were assessed immediately after exhaustion. Results: Beta power was negatively correlated with time spent at V˙O2max (r = −0.542, p = 0.002). Theta and Alpha power alone showed no direct associations with endurance, but EEG–metabolic ratios revealed significant correlations. Specifically, the time to reach V˙O2max correlated with Alpha/V˙O2 (p < 0.001), Alpha/V˙CO2 (p < 0.001), and Beta/V˙CO2 (p = 0.002). The time spent at V˙O2max correlated with Theta/V˙O2 (p = 0.002) and Theta/V˙CO2 (p < 0.001). The time-to-exhaustion was correlated with Theta/V˙CO2 (p < 0.001) and Alpha/V˙CO2 (p < 0.001). Conclusions: These findings indicate that cortical oscillations were associated with different aspects of acute fatigue regulation. Beta activity was associated with fatigue-related neural strain, whereas Theta and Alpha bands, when normalized to metabolic load, were consistent with a role in ventilatory coordination and motor control. EEG–metabolic ratios may provide exploratory indicators of brain–metabolism interplay during high-intensity exercise and could help guide future brain-body interactions in endurance performance. Full article
Show Figures

Figure 1

16 pages, 495 KB  
Article
Hematological, Biochemical, and Performance Adaptations in Amateur Soccer Players Following a 4-Week Preseason Training Period
by Panagiotis Georgiadis, Pierros Thomakos, Ilias Smilios, Angeliki Papapanagiotou, Anastasia Evaggelatou and Gregory C. Bogdanis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 314; https://doi.org/10.3390/jfmk10030314 - 14 Aug 2025
Viewed by 1476
Abstract
Background: We examined changes in hematological, biochemical, and hormonal biomarkers, along with endurance and explosive performance indices, in amateur soccer players over a 4-week preseason period. Methods: Thirteen players (age: 19.7 ± 2.0 years; body mass: 73.0 ± 6.8 kg; height: [...] Read more.
Background: We examined changes in hematological, biochemical, and hormonal biomarkers, along with endurance and explosive performance indices, in amateur soccer players over a 4-week preseason period. Methods: Thirteen players (age: 19.7 ± 2.0 years; body mass: 73.0 ± 6.8 kg; height: 180 ± 0.1 cm; body fat: 8.6 ± 3.5%) were monitored during a 4-week preseason program, which included 21 training days, three friendly matches, and four days of rest. Before and after this period, endurance capacity was evaluated using the Yo-Yo IR1 test, and leg power was assessed using the CMJ. Blood samples were collected for three consecutive days in week 1 and after week 4 to assess hematological and biochemical parameters. Internal load during all weeks was assessed with session RPE (sRPE). Results: There was a 25.5% increase in Yo-Yo IR1 distance (2123 ± 413 vs. 1560 ± 356 m, p = 0.002), with the estimated VO2max and the speed associated with VO2max (vVO2max) improving by 8.7% (49.5 ± 3.0 to 54.2 ± 3.5 mL/kg/min, p = 0.002) and 5.3% (16.0 ± 0.7 to 16.9 ± 0.6 km/h, p = 0.002), respectively. In contrast, CMJ performance in weeks 2–4 declined by 13.4–21.0% relative to baseline, while sRPE peaked during week 3 (4011 ± 440 AU). Hematological variables were mostly stable except for small increases in MCV and MCH (1.5–1.8%, p < 0.001), while there were significant reductions in urea (12%), uric acid (6.2%), and erythropoietin (33%). Conclusions: A 4-week preseason program substantially improved aerobic capacity yet compromised leg power. Changes in biomarker profiles suggest that the training load maintained an appropriate balance between overload and recovery. These findings provide valuable guidance for coaches seeking to optimize training protocols while minimizing the risk of overtraining and preventing injuries during the competitive season. Full article
Show Figures

Figure 1

14 pages, 660 KB  
Article
Modified Stress Score and Sympathetic–Parasympathetic Ratio Using Ultra-Short-Term HRV in Athletes: A Novel Approach to Autonomic Monitoring
by Andrew D. Fields, Matthew A. Mohammadnabi, Michael V. Fedewa and Michael R. Esco
J. Funct. Morphol. Kinesiol. 2025, 10(3), 310; https://doi.org/10.3390/jfmk10030310 - 12 Aug 2025
Viewed by 795
Abstract
Background: Monitoring autonomic balance provides valuable insights into recovery status and physiological readiness, both of which are essential for performance optimization in athletes. The Stress Score (SS) and Sympathetic–Parasympathetic Ratio (SPS), derived from Poincaré plot heart rate variability (HRV) indices, have been proposed [...] Read more.
Background: Monitoring autonomic balance provides valuable insights into recovery status and physiological readiness, both of which are essential for performance optimization in athletes. The Stress Score (SS) and Sympathetic–Parasympathetic Ratio (SPS), derived from Poincaré plot heart rate variability (HRV) indices, have been proposed as practical markers of sympathetic activity and overall autonomic balance. However, these traditional calculations often require lengthy recordings and specialized software, limiting their feasibility in field settings. This study introduces modified versions of these metrics derived from ultra-short-term (1 min) time–domain HRV recordings: the Modified Stress Score (MSS) and Modified Sympathetic–Parasympathetic Ratio (MSPS). Methods: Competitive male athletes (n = 20, age = 21.2 ± 2.1 year, height = 183.6 ± 8.9 cm, weight = 79.2 ± 10.3 kg) completed a maximal exercise test with HRV recorded before and after exercise. Results: Following natural log-transformation, MSS and MSPS demonstrated strong correlations with SS and SPS across all time points (r = 0.87–0.94, all p < 0.01) and displayed the expected physiological responses to exercise and recovery. Conclusions: These findings suggest that MSS and MSPS are practical, accessible tools for assessing autonomic balance in athletes. Their application may enhance our ability to monitor recovery status, guide individualized training strategies, and optimize performance in applied sport settings. Full article
Show Figures

Figure 1

18 pages, 1632 KB  
Article
Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes
by Mariola Gepfert, Artur Gołaś, Robert Roczniok, Jan Walencik, Kamil Węgrzynowicz and Adam Zając
J. Funct. Morphol. Kinesiol. 2025, 10(3), 304; https://doi.org/10.3390/jfmk10030304 - 5 Aug 2025
Viewed by 1513
Abstract
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to [...] Read more.
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to either an experimental group (n = 15), which supplemented their regular badminton training with plyometric exercises, or a control group (n = 15), which continued standard technical training. Performance assessments included squat jump (SJ), countermovement jump (CMJ), single-leg jumps, sprint tests (5 m, 10 m), lateral movements, musculotendinous stiffness, and RSI measurements. Results: The experimental group showed statistically significant improvements in jump height, power output, stiffness, and 10 m sprint and lateral slide-step performance (p < 0.05), with large effect sizes. No significant changes were observed in the control group. Single-leg jump improvements suggested potential benefits for addressing lower-limb asymmetries. Conclusions: An 8-week plyometric intervention significantly enhanced lower-limb explosive performance and multidirectional movement capabilities in young badminton players. These findings support the integration of targeted plyometric training into regular training programs to optimize physical performance, improve movement efficiency, and potentially reduce injury risk in high-intensity racket sports. Full article
Show Figures

Figure 1

15 pages, 1472 KB  
Article
Determinants of 50 m Front Crawl Performance in Adolescent Non-Elite Female Swimmers: A Longitudinal Study
by Mariusz Kuberski, Agnieszka Musial, Michalina Błażkiewicz and Jacek Wąsik
J. Funct. Morphol. Kinesiol. 2025, 10(3), 274; https://doi.org/10.3390/jfmk10030274 - 17 Jul 2025
Viewed by 789
Abstract
Objectives: The aim of this study was to indicate which variables are the most important determinants of swimming results in the 50 m front crawl among non-elite pre-pubertal female swimmers. Methods: The study group consisted of 14 female swimmers (at the [...] Read more.
Objectives: The aim of this study was to indicate which variables are the most important determinants of swimming results in the 50 m front crawl among non-elite pre-pubertal female swimmers. Methods: The study group consisted of 14 female swimmers (at the time of the research commencement—biological age: 10.52 ± 0.37 years; body mass: 34.99 ± 2.77 kg; height: 146.00 ± 3.05 cm). The study was conducted over three years. The swimmers performed capacity training recommended by the British Swimming Federation. Every 6 months, in the participants the following parameters were measured: percentage of body fat; anthropometric measurements; aerobic and anaerobic capacity; and respiratory parameters: vital capacity—VC, forced expiratory volume—FEV1, and forced vital capacity—FVC. Additionally, a 50 m front crawl swim test was performed. Results: After adjusting for multicollinearity, the most influential determinants of swimming performance were anthropometric measures: shoulder width was the most influential predictor, with a regression coefficient of −0.66, followed by foot length (with a beta of −0.15) and chest depth (with a beta of 0.008). The remaining anthropometric and physical predictors did not contribute to the prediction of 50 m freestyle performance. Conclusions: These research results suggest to coaches and trainers that sports performance in sprint distances in pre-pubertal girls is not determined by aerobic and anaerobic capacity or body fat but is based on the somatic build of the swimmer. Full article
Show Figures

Figure 1

12 pages, 606 KB  
Article
High-Intensity Interval Training Improves Cardiovascular Fitness and Induces Left-Ventricular Hypertrophy During Off-Season
by Tomas Venckunas, Birute Gumauskiene, Pornpimol Muanjai, Joan Aureli Cadefau and Sigitas Kamandulis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 271; https://doi.org/10.3390/jfmk10030271 - 16 Jul 2025
Cited by 1 | Viewed by 2249
Abstract
Background: Well-designed endurance training leads to improved cardiovascular fitness and sports performance in prolonged exercise tasks, with the adaptations depending on multiple factors, including the training modality and the population in question. It is still disputable how the type of training affects [...] Read more.
Background: Well-designed endurance training leads to improved cardiovascular fitness and sports performance in prolonged exercise tasks, with the adaptations depending on multiple factors, including the training modality and the population in question. It is still disputable how the type of training affects myocardial remodeling, and the information on myocardial remodeling by high-intensity interval training (HIIT) is particularly scarce. Methods: The current study investigated changes in cardiac structure after volume-progressive HIIT in running mode. As part of their conditioning program, amateur athletes (mean ± SD age of 18.2 ± 1.0 years) exclusively conducted HIIT in a volume-progressive fashion over 7 weeks (a total of 21 sessions). Peak oxygen uptake as well as 200 m and 2000 m running performance were measured, and transthoracic two-dimensional echocardiography was conducted before and after the intervention. Results: Training improved running performance, increased the peak oxygen uptake and left atrium diameter (from 32.0 ± 2.5 to 33.5 ± 2.3 mm; p = 0.01), and induced ~11% thickening of the left-ventricular posterior wall (7.5 ± 0.7 to 8.2 ± 0.4 mm; p = 0.01) and interventricular septum (7.6 ± 0.7 to 8.6 ± 0.9 mm; p = 0.02), but not the dilation of left-ventricular, right-ventricular, or right atrium chambers. Conclusions: HIIT of just 127 km of running per 8.5 h during 7 weeks was sufficient to improve aerobic capacity and running performance, and induce left-ventricular wall hypertrophy and left atrium dilation, in young healthy athletes. Full article
Show Figures

Figure 1

14 pages, 1973 KB  
Article
The Effects of Short-Duration Ischemic Preconditioning on Horizontal and Vertical Jump Performance in Male and Female Track and Field Jumpers
by Varvara Nektaria Gkari, Athanasios Tsoukos, Nikolaos Aspradakis and Gregory C. Bogdanis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 265; https://doi.org/10.3390/jfmk10030265 - 14 Jul 2025
Viewed by 2141
Abstract
Background: Ischemic preconditioning (IPC) is a non-invasive, time-efficient strategy that has been shown to acutely enhance athletic performance. The present study examined the effects of 5 min of IPC on vertical and horizontal jump performance. A secondary aim was to explore the [...] Read more.
Background: Ischemic preconditioning (IPC) is a non-invasive, time-efficient strategy that has been shown to acutely enhance athletic performance. The present study examined the effects of 5 min of IPC on vertical and horizontal jump performance. A secondary aim was to explore the associations between outcomes of the 5-Hop (5-H) test and drop jump performance, in order to provide further evidence supporting the validity of the 5-H test for assessing reactive strength characteristics in trained jumpers. Methods: Twelve trained track and field jumpers (nine males, three females, age: 23.2 ± 2.9 years; height: 1.76 ± 0.07 m; body mass: 71.5 ± 8.0 kg) completed two conditions: an IPC condition applied to one leg and a control condition applied to the contralateral leg. In the first week, one leg was assigned to IPC and the other to the control condition, while in the second week, the conditions for each leg were reversed. Vertical single-leg performance was evaluated by drop jump (DJ) height, ground contact time, and reactive strength index (RSI). Horizontal jump performance was assessed by a five-hop (5-H) test during which total distance (TD), total time (TT), and reactive hopping index (RHI) were obtained. Results: Compared to the control condition, IPC enhanced DJ height (+ 3.6%) and RSI (+ 7.8%) (p < 0.05, g = 0.16 and 0.32, respectively) and reduced contact time (−4.4% p < 0.05, g = 0.41). Also, IPC resulted in significant improvements in TD (+ 4.1%) and RHI (+ 3.9%) during the 5-H test (p < 0.05, g = 0.32 and 0.42, respectively), while TT remained unchanged. Conclusions: A single cycle of IPC acutely improved vertical and horizontal jump performance and reactive strength indices in trained jumpers. These findings support the use of IPC as a practical, time-efficient method to enhance neuromuscular performance in explosive tasks. Full article
Show Figures

Figure 1

16 pages, 1185 KB  
Article
Iliotibial Band Behavior Assessed Through Tensor Fasciae Latae Electromyographic Activity with Different Foot Orthoses in Recreational Runners According to Foot Type: A Cross-Sectional Study
by Ruben Sanchez-Gomez, Álvaro Gómez Carrión, Ismael Ortuño Soriano, Paola Sanz Wozniak, Ignacio Zaragoza García, Fatma Ben Waer, Cristina Iona Alexe and Dan Iulian Alexe
J. Funct. Morphol. Kinesiol. 2025, 10(3), 237; https://doi.org/10.3390/jfmk10030237 - 23 Jun 2025
Viewed by 1066
Abstract
Background: Iliotibial band syndrome (ITBS) through the tensor fascia latae (TFL) is a well-known pathology among runners whose etiology is not completely clear, nor is the effectiveness of plantar insoles for different types of feet known well enough for them to be considered [...] Read more.
Background: Iliotibial band syndrome (ITBS) through the tensor fascia latae (TFL) is a well-known pathology among runners whose etiology is not completely clear, nor is the effectiveness of plantar insoles for different types of feet known well enough for them to be considered a possible approach for this issue. Objective: to understand how foot type and foot orthotics may influence the electromyographic (EMG) activity of the TFL. Methods: A total of 41 healthy recreational runners (mean age 32.66 ± 3.51) were recruited for the present cross-sectional study, categorizing them as neutral (NEUg = 15), supinators (SUPg = 15), and pronators (PROg = 11) according to the foot postural index, over a period of 11 months. The EMG of the TFL was measured using a surface electromyograph device while they ran on a treadmill at a constant speed of 9 km/h for 3 min, randomly using supinating (SUP), pronating (PRO), or heel lift (TAL) insoles of 5 mm each one, compared to the baseline condition (SIN). The intraclass correlation coefficient (ICC) was performed to check the reproducibility of the tests, pairwise comparisons with Bonferroni adjustment were made, and to test the differences between measurements, the Friedman test was performed. Results: The Shapiro–Wilk test indicated a normal distribution of the sample (p > 0.05). Almost all obtained results showed a “perfect reproducibility” close to one; a significant statistical increase was observed in the mean EMG values from NEUg (87.58 ± 4.81 mV) to SUPg (97.17 ± 4.3 mV) (p < 0.05) during SIN+ basal condition. Additionally, there was a statistical reduction from SIN (87.58 ± 4.81 mV) vs. PRO (74.69 ± 3.77 mV) (p < 0.001) in NEUg and from SIN (97.17 ± 4.3 mV) vs. PRO (90.96 ± 4 mV) (p < 0.001) in SUPg. Conclusions: The SUPg exhibited increased activation of TFL fibers compared to the NEUg, likely due to the biomechanical demands associated with a supinated foot type. In contrast, the use of PRO appeared to promote relaxation of the TFL fibers by inducing internal rotation of the lower limb. Based on these preliminary results from a cross-sectional study in a healthy population, it is recommended to assess foot type when addressing ITBS and to consider the use of PRO as a complementary therapeutic strategy alongside conventional treatments. Full article
Show Figures

Figure 1

14 pages, 2603 KB  
Article
Pulsed Electromagnetic Field (PEMF) Stimulation Increases Muscle Activity During Exercise in Sedentary People
by Aurelio Trofè, Alessandro Piras, Luca Breviglieri, Alessandra Laffi, Andrea Meoni and Milena Raffi
J. Funct. Morphol. Kinesiol. 2025, 10(2), 232; https://doi.org/10.3390/jfmk10020232 - 19 Jun 2025
Viewed by 3718
Abstract
Objectives: A pulsed electromagnetic field (PEMF) induces electric currents in biological tissue, enhancing muscle energy expenditure during heavy constant-load exercises. In this paper, we investigate the PEMF effect on muscular activation in male sedentary people. Methods: The surface electromyographic (EMG) activity of [...] Read more.
Objectives: A pulsed electromagnetic field (PEMF) induces electric currents in biological tissue, enhancing muscle energy expenditure during heavy constant-load exercises. In this paper, we investigate the PEMF effect on muscular activation in male sedentary people. Methods: The surface electromyographic (EMG) activity of the right leg’s vastus medialis (RVM) and biceps femoris (RBF) muscles was recorded and analyzed. The root mean square values were normalized to the peak amplitude observed during maximal voluntary contraction. Measurements were taken at baseline (stationary seated position), during warm-up (unloaded cycling), and throughout 15 min of constant-load exercise performed at moderate intensity. Subjects performed two experimental conditions, when PEMF was turned ON versus OFF. Results: No significant difference was found during the baseline. The analysis during warm-up showed significant differences between conditions (ON vs. OFF) for both muscles (RVM p = 0.019; RBF p < 0.001). The analysis during constant-load exercise showed significant differences between conditions (ON vs. OFF) for RVM only (p = 0.002). Conclusions: This study provides evidence that PEMF stimulation acutely enhances muscle activation, primarily in the vastus medialis, with a comparatively smaller effect on the biceps femoris during moderate-intensity cycling in sedentary young men. The observed increase in EMG activity suggests that PEMF may facilitate neuromuscular excitability and muscle recruitment, potentially through mechanisms related to calcium signaling and enhanced muscle perfusion. Full article
Show Figures

Figure 1

28 pages, 1852 KB  
Article
Effects of a 5-Day Back Squat Overreaching Protocol on Strength Performance, Perceived Recovery and Wellness Responses: A Pilot Trial
by Lee Bell, Alan Ruddock, Jordan Boriel, Tom Maden-Wilkinson, Steve W. Thompson, Kieran J. Wright, Kieran Burke and David Rogerson
J. Funct. Morphol. Kinesiol. 2025, 10(2), 227; https://doi.org/10.3390/jfmk10020227 - 13 Jun 2025
Viewed by 3663
Abstract
Background: The aim of this study was to characterise the performance, perceptual, and wellness responses to a barbell back squat overreaching training protocol. Methods: Eight trained male participants (age = 24.6 ± 2.8 years; relative to body mass back squat one repetition maximum [...] Read more.
Background: The aim of this study was to characterise the performance, perceptual, and wellness responses to a barbell back squat overreaching training protocol. Methods: Eight trained male participants (age = 24.6 ± 2.8 years; relative to body mass back squat one repetition maximum (1-RM) = 1.9 ± 0.4; training experience = 7.0 ± 3.2 years) participated in a 5-day squat OR protocol (SqOR), followed by a 14-day taper. SqOR consisted of five sets of barbell back squats using 80% of daily adjusted 1-RM. A 40% velocity loss threshold was used to determine the set end point. For performance, isometric mid-thigh pull (IMTP) peak force (PF), and countermovement jump (CMJ) PF and jump height; for perceptual, perceived recovery scale (PRS); and for wellness, Hooper Wellness Index (HWI), were recorded at baseline, each day of SqOR, and at select intervals during the taper (POST 1 d, 2 d, 7 d, and 14 d). Follow-up back squat 1-RM testing was conducted at POST 7 d and POST 14 d to determine strength-performance changes relative to baseline. Results: Back squat 1-RM increased by 4.8% at POST 7 d and 5.2% at POST 14 d. IMTP PF increased by 10.3% at POST 7 d and 11.4% at POST 14 d relative to the baseline. CMJ PF and jump height decreased during SqOR but returned to baseline by POST 7 d. PRS and HWI worsened during SqOR, with the greatest impairment occurring on day 3 (PRS = −41.5%; HWI = 34.4%), and did not return to baseline until POST 14 d and POST 2 d, respectively. Conclusions: These findings demonstrate that a short-term period of planned OR improves muscular strength performance, but the duration of the taper influences when peak strength improvements are observed. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

14 pages, 1165 KB  
Review
Effects of Elastic Band Training on Physical Performance in Team Sports: A Systematic Review and Meta-Analysis
by Dušan Stanković, Anja Lazić, Nebojša Trajković, Miladin Okičić, Aleksa Bubanj, Tomáš Vencúrik, Tomislav Gašić and Saša Bubanj
J. Funct. Morphol. Kinesiol. 2025, 10(4), 402; https://doi.org/10.3390/jfmk10040402 - 17 Oct 2025
Abstract
Objectives: Elastic band training is a popular alternative to traditional resistance methods, but its effects on sport-specific performance in team athletes remain inconsistent. This systematic review and meta-analysis aim to evaluate the efficacy of elastic band training on muscular strength, linear sprint, change [...] Read more.
Objectives: Elastic band training is a popular alternative to traditional resistance methods, but its effects on sport-specific performance in team athletes remain inconsistent. This systematic review and meta-analysis aim to evaluate the efficacy of elastic band training on muscular strength, linear sprint, change of direction (COD), and jump height in team sport athletes. Methods: Following PRISMA guidelines, a comprehensive search was conducted in PubMed, Web of Science, and Scopus for randomized controlled trials and quasi-experimental studies. The quantitative synthesis included studies comparing elastic band training interventions with control groups receiving routine training, habitual physical activity, or no additional resistance training intervention. Data were extracted using a standardized form, and a meta-analysis was performed using a random-effects model. Standardized mean differences (SMDs) and 95% confidence intervals (CIs) were calculated to determine the pooled effect of the intervention on key performance indicators. A total of 729 athletes were included. Results: The meta-analysis showed a statistically significant positive effect of elastic band training on lower limb explosive power (SMD = 1.43, p = 0.01), change of direction performance (SMD = −2.54, p = 0.01), and sprint performance (SMD = −1.64, p = 0.01). Conclusions: Elastic band training is a highly effective and practical method for significantly improving key physical performance indicators, including explosive power, COD, and sprint ability, in team sport athletes. Its portability and adaptability make it a valuable alternative or complement to conventional resistance training. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

11 pages, 868 KB  
Case Report
A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set
by Konstantinos Papadimitriou, Sousana K. Papadopoulou, Evmorfia Psara and Constantinos Giaginis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 291; https://doi.org/10.3390/jfmk10030291 - 29 Jul 2025
Viewed by 1159
Abstract
Background: Swimming coaches search for the most efficient training approach and stimuli for swimmers’ improvement. High-intensity interval training (HIIT) is a well-established training approach used by coaches to accelerate swimmers’ improvement. A HIIT variation, which has lately been discussed by many coaches about [...] Read more.
Background: Swimming coaches search for the most efficient training approach and stimuli for swimmers’ improvement. High-intensity interval training (HIIT) is a well-established training approach used by coaches to accelerate swimmers’ improvement. A HIIT variation, which has lately been discussed by many coaches about its possible effectiveness on performance, is Ultra Short Race Pace Training (USRPT). The present case study aimed to examine the effect of a faster-than-race pace test set (FRPtS) on the performance of a middle-distance (MD) swimmer at the freestyle events. Methods: This case study included a 21-year-old national-level MD swimmer with 16 years of swimming experience. The swimmer followed 11 weeks of FRPtS sets in a 17-week training intervention. The FRPtS sets were repeated two to three times per week, the volume ranged from 200 m to 1200 m, and the distances that were used were 25 m, 50 m, and 100 m at a faster pace than the 400 m. Descriptive statistics were implemented, recording the average with standard deviation (number in parentheses), the sum, and the percentages (%). Results: According to the results, the swimmer improved his personal best (PB) and season best (SB) performance in the events of 200 m and 400 m freestyle. Specifically, the improvement from his PB performance was 2.9% (−3.49 s) and 1.0% (−2.55 s), whereas in his SB performance it was 2.9% (−3.53 s) and 4.4% (−11.43 s) for the 200 and 400 m freestyle, respectively. Conclusions: Concluding, FRPtS is assumed to have beneficial effects on the swimming performance of MD events. However, further crossover or parallel studies on different swimming events with more participants and biomarkers must be conducted to clarify the effects of that kind of training on swimming performance. Full article
Show Figures

Figure 1

Back to TopTop