materials-logo

Journal Browser

Journal Browser

Exploring Novel Biomaterials and Digital Techniques for Restorative and Adhesive Dentistry

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Biomaterials".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 851

Special Issue Editors


E-Mail Website
Guest Editor
Department of Clinical Sciences and Stomatology (DISCO), Università Politecnica delle Marche, 60126 Ancona, Italy
Interests: restorative dentistry; bleaching agents; dental biomaterials; preventive dentistry; adhesive dentistry; fixed prosthodontics; endodontics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Messina University, 98100 Messina, Italy
Interests: endodontic instrument; digital dentistry; augmented reality applications; restorative dentistry; prosthetic dentistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nowadays, nanoscience and nanotechnology have become particularly important technologies in dentistry. Indeed, following a minimally invasive approach, new biomaterials with optimal chemo-mechanical characteristics and innovative digital techniques enable simplification and improvement of the quality of procedures, resulting in predictable and satisfactory results for both the dentist and the patient.

Therefore, this Special Issue will focus on new biomaterials and digital techniques in restorative dentistry and endodontics and their capability to improve dental health. We welcome submissions of original research articles, reviews, and new dental techniques.

Dr. Vincenzo Tosco
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • digital dentistry
  • dental techniques
  • restorative dentistry
  • adhesive dentistry
  • biomaterials
  • endodontics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4767 KiB  
Article
Comparison of Surface Strains of Polymeric Frameworks for Fixed Implant-Supported Prostheses: A Digital Image Correlation Study
by Ana Messias, Maria Augusta Neto, Ana Paula Piedade, Ana Amaro, Jack T. Krauser and Fernando Guerra
Materials 2025, 18(8), 1700; https://doi.org/10.3390/ma18081700 - 9 Apr 2025
Viewed by 211
Abstract
The gold standard materials used for frameworks of full-arch implant-supported fixed prostheses (ISFPs) have traditionally been metal alloys, but recently, high-performance polymers such as polyetherketones and fibre-reinforced resins have been gaining popularity despite the lack of evidence of load-bearing capacity. The aim of [...] Read more.
The gold standard materials used for frameworks of full-arch implant-supported fixed prostheses (ISFPs) have traditionally been metal alloys, but recently, high-performance polymers such as polyetherketones and fibre-reinforced resins have been gaining popularity despite the lack of evidence of load-bearing capacity. The aim of the present study was to evaluate the displacements and strains of milled polymeric frameworks for full-arch ISFPs using 3D digital image correlation. Methods: Twelve frameworks were milled from four polymeric materials (three per group): polyetheretherketone (PEEK), polyetherketoneketone (PEKK), poly(methyl methacrylate) (PMMA) and fibre-reinforced composite (FRC). Each framework was fitted with titanium links and screwed to implant analogues embedded in resin and tested for static load-bearing capacity up to 200N. Displacements were captured with two high-speed photographic cameras and analysed with a video correlation system on three spatial axes, U, V, and W, along with principal tensile, compressive and von Mises strains. Results: PEEK exhibited the highest displacement, indicating greater flexibility, while FRC showed the lowest displacement, suggesting enhanced rigidity. Von Mises strain analysis revealed that PMMA and PEEK experienced higher strain, whereas PEKK and FRC demonstrated lower strain distribution. Bayesian ANOVA provided strong evidence for material differences. Conclusion: FRC exhibited superior load-bearing characteristics, reinforcing its potential as a viable clinical alternative to metal-based ISFPs. Full article
Show Figures

Figure 1

15 pages, 1574 KiB  
Article
The Effect of Manufacturing Factors on the Material Properties and Adhesion of C. albicans and S. mutans on Additive Denture Base Material
by Laura Kurzendorfer-Brose and Martin Rosentritt
Materials 2025, 18(6), 1323; https://doi.org/10.3390/ma18061323 - 17 Mar 2025
Viewed by 315
Abstract
(1) Understanding the effects of manufacturing factors on microbial adhesion is essential for optimizing additive denture base materials and improving their clinical performance. This study evaluated how polymerization time, layer thickness, extended cleaning, and storage conditions influence C. albicans and S. mutans adhesion [...] Read more.
(1) Understanding the effects of manufacturing factors on microbial adhesion is essential for optimizing additive denture base materials and improving their clinical performance. This study evaluated how polymerization time, layer thickness, extended cleaning, and storage conditions influence C. albicans and S. mutans adhesion on a denture base material. (2) Specimens (n = 15/group, d = 8 mm, h = 2 mm) were additively fabricated or poured (reference). Digital light processing was performed with varying polymerization times, layer thicknesses, extended cleaning, and storage. Microbial adhesion was assessed using a luminescence assay. Surface properties were characterized by roughness (Sa/Sz), hardness, and surface free energy (SFE). Statistics: The Shapiro–Wilk test, ANOVA, Bonferroni post hoc test, and Pearson correlation (α = 0.05) were utilized. (3) Polymerization time, layer thickness, cleaning, and storage conditions significantly influenced C. albicans and S. mutans adhesion. Increased layer thickness reduced C. albicans adhesion but promoted S. mutans colonization, emphasizing the role of SFE. Extended polymerization and optimized cleaning reduced microbial adhesion, highlighting the need for tailored processing to enhance microbial resistance and material integrity. (4) Manufacturing factors influenced microbial adhesion, with additive materials reducing the abundance of C. albicans but increasing the abundance of S. mutans, underscoring the importance of material adjustments and extended polymerization to enhance microbial resistance. Full article
Show Figures

Figure 1

Back to TopTop