Mineral, Fluid, and Melt Inclusions—Analysis, Interpretation, and Application

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (30 September 2020) | Viewed by 31407

Special Issue Editor


E-Mail Website
Guest Editor
School of the Environment, University of Windsor, Windsor, ON N9B 3P4, Canada
Interests: geochemistry; hydrothermal mineral deposits; laser ablation ICP-MS
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mineral, fluid, and melt inclusions provide critical information on the physicochemical properties of geochemical systems that are unobtainable by other means. Combining inclusion petrography, compositional information, phase equilibria, and modeling gives unique insights into geologic spaces, times, and processes that are otherwise inaccessible and significantly contributes to advancement in diverse areas including petrology, mineral deposits, and hydrocarbon reservoir characterization, among others. This Special Issue will combine the latest advances in mineral, fluid, and melt inclusion analysis and interpretation with studies in the application of inclusions to a spectrum of geologic environments and investigations. Consequently, submissions spanning the breadth and depth of mineral, fluid, and melt inclusion science are encouraged.

Dr. Joel E. Gagnon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Mineral, fluid, and melt inclusions
  • Geofluids
  • Microthermometric analysis
  • Elemental, isotopic, and molecular microanalysis
  • Bulk analysis
  • Inclusion synthesis
  • Thermodynamics and modeling
  • Mineral deposits
  • Petrology
  • Hydrocarbon reservoirs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

34 pages, 8837 KiB  
Article
Mineralogy, Fluid Inclusion, and C-O-Sr Isotope Geochemistry to Unravel the Evolution of the Magmatic-Hydrothermal System at the Igoudrane Silver-Rich Deposit (Imiter District, Eastern Anti-Atlas, Morocco)
by Mamadoudjan Diallo, Mohammed Bouabdellah, Gilles Levresse, Johan Yans, Francesca Castorina, Andreas Klügel, Mohamed Mouhagir, Salim El Mouden and Lhou Maacha
Minerals 2021, 11(9), 997; https://doi.org/10.3390/min11090997 - 12 Sep 2021
Cited by 3 | Viewed by 3671
Abstract
The Igoudrane mine with a total production of 700,000 t of ore grading 485 g/t Ag is currently one of the most productive mines in the Imiter district of the eastern Anti-Atlas in Morocco. The silver-rich ± base metal deposit occurs dominantly as [...] Read more.
The Igoudrane mine with a total production of 700,000 t of ore grading 485 g/t Ag is currently one of the most productive mines in the Imiter district of the eastern Anti-Atlas in Morocco. The silver-rich ± base metal deposit occurs dominantly as vein- and hydrothermal breccia-hosted orebodies at the interface between the lower Ediacaran turbidites of the Saghro Group and the unconformably overlying, dominantly felsic volcanic, and volcaniclastic rocks of the late Ediacaran Ouarzazate Group. Higher-grade ores are lithologically hosted by the uppermost organic-rich black shale unit and structurally controlled by the intersection of subvertical NW- and NE-trending fault systems. Ore-related hydrothermal alteration includes, in order of decreasing abundance, carbonatization, silicification, sericitization, and chloritization. Three primary paragenetic stages of veining and associated silver ± base metal mineralization have been recognized: (1) early pyrite + quartz + Ag-bearing sulfides and sulfosalts; (2) main Ag-bearing sulfides and sulfosalts + calcite ± fluorite ± dolomite; and (3) late quartz + calcite + base-metal sulfides (galena, sphalerite, pyrite, chalcopyrite). Irrespective of the ore stage, the dominant Ag-bearing ore minerals are Ag-Hg amalgam, argentite, freibergite, acanthite, polybasite, pyrargyrite, and proustite. Fluid inclusion data show a trend of decreasing temperatures with time, from the main silver stage (Th = 180 ± 12 °C) to late base-metal stage (Th = 146 ± 7 °C), consistent with fluid mixing, cooling, and/or dilution. The coexistence of aqueous-rich and vapor-rich fluid inclusions together with variations in bulk salinity (NaCl + CaCl2) of the mineralizing fluids during the main silver stage, at similar temperatures, indicate that boiling and subsequent degassing occurred during the main ore-forming event due to a pressure decrease. Calculated δ18Ofluid values along with REE+Y and Sr isotope constraints suggest that the ore-forming fluids originated from a predominantly magmatic source, although incursion of meteoric waters during collapse of the hydrothermal system could have contributed to deposition. The post-ore, base-metal quartz-carbonate-dominated mineralization was deposited from dilute Ca-Na-Cl-bearing fluids at temperature below 150 °C. Overall, fluid–rock interaction with the black shales along major faults and thin permeable horizons, boiling-degassing—with subsequent fluid mixing, cooling, and/or dilution—were the main mechanisms of silver deposition. Full article
Show Figures

Graphical abstract

19 pages, 6388 KiB  
Article
Epigenetic-Hydrothermal Fluorite Veins in a Phosphorite Deposit from Balaton Highland (Pannonian Basin, Hungary): Signatures of a Regional Fluid Flow System in an Alpine Triassic Platform
by Zsuzsa Molnár, Gabriella B. Kiss, Ferenc Molnár, Tamás Váczi, György Czuppon, István Dunkl, Federica Zaccarini and István Dódony
Minerals 2021, 11(6), 640; https://doi.org/10.3390/min11060640 - 16 Jun 2021
Cited by 4 | Viewed by 2854
Abstract
The middle Anisian extensional tectonics of the Neotethyan realm developed a small, isolated carbonate platform in the middle part of the Balaton Highland (western Hungary), resulted in the deposition of uranium-bearing seamount phosphorite on the top of the drowned platform and produced some [...] Read more.
The middle Anisian extensional tectonics of the Neotethyan realm developed a small, isolated carbonate platform in the middle part of the Balaton Highland (western Hungary), resulted in the deposition of uranium-bearing seamount phosphorite on the top of the drowned platform and produced some epigenetic fluorite veins in the Middle Triassic sequence. The stable C-O isotope data of carbonates are shifted from the typical Triassic carbonate ranges, confirming the epigenetic-hydrothermal origin of veining. Primary fluid inclusions in fluorite indicate that these veins were formed from low temperature (85–169 °C) and high salinity NaCl + CaCl2 + H2O type (apparent total salinity: 15.91–22.46 NaCl wt%) hydrothermal fluids, similar to parent fluids of the Alpine-type Pb-Zn deposits. These findings indicate that the Triassic regional fluid circulation systems in the Alpine platform carbonates also affected the area of the Balaton Highland. This is also in agreement with the previously established palinspatic tectonic reconstructions indicating that the Triassic carbonate and basement units in the Balaton Highland area were a part of the Southern Alpine. Similar fluorite veining in phosphorite deposits is also known in the Southern Alpine areas (e.g., Monte San Giorgi, Italy). Raman spectroscopic analyses detected H2 gas in the vapor phase of the fluid inclusions and a defect-rich fluorite structure in violet to black colored growth zones. This unique phenomenon is assumed to be the result of interaction between the uranium-rich phosphorite and the parent fluids of the epigenetic fluorite veins. Full article
Show Figures

Figure 1

21 pages, 32724 KiB  
Article
Mineralogical Tracers of Gold and Rare-Metal Mineralization in Eastern Kazakhstan
by Boris A. D’yachkov, Ainel Y. Bissatova, Marina A. Mizernaya, Sergey V. Khromykh, Tatiana A. Oitseva, Oxana N. Kuzmina, Natalya A. Zimanovskaya and Saltanat S. Aitbayeva
Minerals 2021, 11(3), 253; https://doi.org/10.3390/min11030253 - 28 Feb 2021
Cited by 8 | Viewed by 4833
Abstract
Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as [...] Read more.
Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as trace-element patterns in ores and their hosts that may mark gold and rare-metal mineralization. The revealed compositions of gold-bearing sulfide ores and a number of typical minerals (magnetite, goethite, arsenopyrite, antimonite, gold and silver) and elements (Fe, Mn, Cu, Pb, Zn, As, and Sb) can serve as exploration guides. The analyzed samples contain rare micrometer lead (alamosite, kentrolite, melanotekite, cotunnite) and nickel (bunsenite, trevorite, gersdorffite) phases and accessory cassiterite, wolframite, scheelite, and microlite. The ores bear native gold (with Ag and Pt impurities) amenable to concentration by gravity and flotation methods. Multistage rare-metal pegmatite mineralization can be predicted from the presence of mineral assemblages including cleavelandite, muscovite, lepidolite, spodumene, pollucite, tantalite, microlite, etc. and such elements as Ta, Nb, Be, Li, Cs, and Sn. Pegmatite veins bear diverse Ta minerals (columbite, tantalite-columbite, manganotantalite, ixiolite, and microlite) that accumulated rare metals late during the evolution of the pegmatite magmatic system. The discovered mineralogical and geochemical criteria are useful for exploration purposes. Full article
Show Figures

Figure 1

10 pages, 2899 KiB  
Article
Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping
by Haixia Chu, Guoxiang Chi and Chunji Xue
Minerals 2020, 10(11), 1043; https://doi.org/10.3390/min10111043 - 23 Nov 2020
Cited by 2 | Viewed by 2297
Abstract
Various analytical techniques have been developed to determine the solution composition of fluid inclusions, including destructive, non-destructive, single-inclusion, and bulk-inclusion methods. Cryogenic Raman spectroscopy, as a non-destructive and single-inclusion method, has emerged as a potentially powerful tool of quantitative analysis of fluid inclusion [...] Read more.
Various analytical techniques have been developed to determine the solution composition of fluid inclusions, including destructive, non-destructive, single-inclusion, and bulk-inclusion methods. Cryogenic Raman spectroscopy, as a non-destructive and single-inclusion method, has emerged as a potentially powerful tool of quantitative analysis of fluid inclusion composition. A method of point analysis using cryogenic Raman spectroscopy has been previously proposed to quantitatively estimate the solute composition of H2O-NaCl-CaCl2 solutions, but there are uncertainties related to heterogeneity of frozen fluid inclusions and potential bias in the processing of Raman spectra. A new method of quantitative analysis of solute composition of H2O-NaCl-CaCl2 solutions using Raman mapping technology is proposed in this study, which can overcome the problems encountered in the point analysis. It is shown that the NaCl/(NaCl + CaCl2) molar ratio of the solution, X(NaCl, m), can be related to the area fraction of hydrohalite over hydrohalite plus antarcticite, Fhydrohalite, by the equation X(NaCl, m) = 1.1435 Fhydrohalite − 0.0884, where Fhydrohalite = hydrohalite area/(hydrohalite area + antarcticite area). This equation suggests that the molar fraction of a salt component may be estimated from the fraction of the Raman peak area of the relevant hydrate. This study has established a new way of estimating solute composition of fluid inclusions using cryogenic Raman mapping technique, which may be extended to other solutions. Full article
Show Figures

Figure 1

18 pages, 6014 KiB  
Article
Mineralogy and Fluid Regime of Formation of the REE-Late-Stage Hydrothermal Mineralization of Petyayan-Vara Carbonatites (Vuoriyarvi, Kola Region, NW Russia)
by Ilya Prokopyev, Evgeniy Kozlov, Ekaterina Fomina, Anna Doroshkevich and Maxim Dyomkin
Minerals 2020, 10(5), 405; https://doi.org/10.3390/min10050405 - 29 Apr 2020
Cited by 17 | Viewed by 3774
Abstract
The Vuoriyarvi Devonian alkaline–ultramafic complex (northwest Russia) contains magnesiocarbonatites with rare earth mineralization localized in the Petyayan-Vara area. High concentrations of rare earth elements are found in two types of these rocks: (a) ancylite-dominant magnesiocarbonatites with ancylite–baryte–strontianite–calcite–quartz (±late Ca–Fe–Mg carbonates) ore assemblage, i.e., [...] Read more.
The Vuoriyarvi Devonian alkaline–ultramafic complex (northwest Russia) contains magnesiocarbonatites with rare earth mineralization localized in the Petyayan-Vara area. High concentrations of rare earth elements are found in two types of these rocks: (a) ancylite-dominant magnesiocarbonatites with ancylite–baryte–strontianite–calcite–quartz (±late Ca–Fe–Mg carbonates) ore assemblage, i.e., “ancylite ores”; (b) breccias of magnesiocarbonatites with a quartz–bastnäsite matrix (±late Ca–Fe–Mg carbonates), i.e., “bastnäsite ores.” We studied fluid inclusions in quartz and late-stage Ca–Fe–Mg carbonates from these ore assemblages. Fluid inclusion data show that ore-related mineralization was formed in several stages. We propose the following TX evolution scheme for ore-related processes: (1) the formation of ancylite ores began under the influence of highly concentrated (>50 wt.%) sulphate fluids (with thenardite and anhydrite predominant in the daughter phases of inclusions) at a temperature above300–350 °C; (2) the completion of the formation of ancylite ores and their auto-metasomatic alteration occurred under the influence of concentrated (40–45 wt.%) carbonate fluids (shortite and synchysite–Ce in fluid inclusions) at a temperature above 250–275 °C; (3) bastnäsite ores deposited from low-concentrated (20–30 wt.%) hydrocarbonate–chloride fluids (halite, nahcolite, and/or gaylussite in fluid inclusions) at a temperature of 190–250 °C or higher. Later hydrothermal mineralization was related to the low-concentration hydrocarbonate–chloride fluids (<15 wt.% NaCl-equ.) at 150–200 °C. The presented data show the specific features of the mineral and fluid evolution of ore-related late-stage hydrothermal rare earth element (REE) mineralization of the Vuoriyarvi alkaline–ultramafic complex. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 2915 KiB  
Review
Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion
by Guoxiang Chi, Larryn W. Diamond, Huanzhang Lu, Jianqing Lai and Haixia Chu
Minerals 2021, 11(1), 7; https://doi.org/10.3390/min11010007 - 24 Dec 2020
Cited by 101 | Viewed by 12791
Abstract
The study of fluid inclusions is important for understanding various geologic processes involving geofluids. However, there are a number of problems that are frequently encountered in the study of fluid inclusions, especially by beginners, and many of these problems are critical for the [...] Read more.
The study of fluid inclusions is important for understanding various geologic processes involving geofluids. However, there are a number of problems that are frequently encountered in the study of fluid inclusions, especially by beginners, and many of these problems are critical for the validity of the fluid inclusion data and their interpretations. This paper discusses some of the most common problems and/or pitfalls, including those related to fluid inclusion petrography, metastability, fluid phase relationships, fluid temperature and pressure calculation and interpretation, bulk fluid inclusion analysis, and data presentation. A total of 16 problems, many of which have been discussed in the literature, are described and analyzed systematically. The causes of the problems, their potential impact on data quality and interpretation, as well as possible remediation or alleviation, are discussed. Full article
Show Figures

Graphical abstract

Back to TopTop