molecules-logo

Journal Browser

Journal Browser

Separation Technology and Applications of Functional Natural Products and Pharmaceutical Molecules

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 August 2025) | Viewed by 1070

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, Free State, South Africa
Interests: synthetic organic chemistry; flavonoid chemistry; ethnopharmacology and natural products; structure elucidation; tannin analysis

E-Mail Website
Guest Editor
Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, South Africa
Interests: functional food; diabetes; oxidative stress; medicinal plant
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Separation technology is pivotal in unlocking the potential of natural products and pharmaceutical molecules. Its applications drive innovation across diverse fields, contributing to health, sustainability, and industrial advancements. Furthermore, separation technology is crucial in isolating, purifying, and characterizing functional natural products and pharmaceutical molecules. Separation techniques include high-performance liquid chromatography, gas chromatography, membrane filtration, and green separation technologies, such as supercritical fluid extraction and bio-based solvents. Advances in these methods have significantly improved the efficiency, specificity, and scalability of separating desired molecules from unwanted impurities. Functional natural products derived from plants, marine organisms, and microorganisms are a rich source of bioactive compounds with therapeutic potential. These include, among others, alkaloids, flavonoids, terpenoids, and peptides, which exhibit antioxidant, anti-inflammatory, anticancer, and antimicrobial properties. Similarly, pharmaceutical molecules often require precise separation techniques during drug development and manufacturing to meet stringent purity and regulatory standards. Advances in chromatographic techniques will thus be the cornerstone for the isolation and identification of these compounds.

This Special Issue invites original research and review articles on the use of separation technology for the isolation of bioactive molecules from all sources of natural products and pharmaceuticals. Emphasis is placed on the integration of advanced separation techniques with cutting-edge analytical tools like mass spectrometry (MS) and nuclear magnetic resonance (NMR) to isolate and identify functional compounds.

Dr. Susan L. Bonnet
Dr. Chika Ifeanyi Chukwuma
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced chromatography
  • green separation technologies
  • purification techniques
  • supercritical fluid extraction
  • membrane filtration
  • natural products
  • bioactive compounds
  • active pharmaceuticals
  • therapeutic applications
  • sustainable processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1491 KB  
Article
GABAergic and α-Glucosidase-Inhibitory Potentials of Fractions and Isolated Xanthones from Hypericum revolutum Vahl subsp. revolutum
by Maria S. Chukwuma, Lorenza Bertaina, Sophia Khom, Chika I. Chukwuma, Pieter C. Zietsman, Anke Wilhelm and Susanna L. Bonnet
Molecules 2025, 30(17), 3530; https://doi.org/10.3390/molecules30173530 - 29 Aug 2025
Viewed by 247
Abstract
This study aimed to investigate the glycaemic control potential and modulation of GABA-induced chloride currents (IGABA) of H. revolutum and the possible bioactive xanthones. Fractions from the leaf and stem extracts (dichloromethane and methanol) were assessed for in vitro α-glucosidase-inhibitory potential [...] Read more.
This study aimed to investigate the glycaemic control potential and modulation of GABA-induced chloride currents (IGABA) of H. revolutum and the possible bioactive xanthones. Fractions from the leaf and stem extracts (dichloromethane and methanol) were assessed for in vitro α-glucosidase-inhibitory potential and their ability to modulate IGABA (GABAergic effect) through GABAA receptors heterologously expressed in Xenopus oocytes. Xanthones 4-hydroxy-2,3-dimethoxy-9H-xanthen-9-one (1), 3-hydroxy-2,4-dimethoxy-9H-xanthen-9-one (2) and trans-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2,3-dihydro-7H-[1,4]dioxino[2,3-c]xanthen-7-one (3) were isolated from the stem and tested in the GABAA receptors assay, but only 3 was assessed for α-glucosidase-inhibitory action. Compared to acarbose (IC50 = 6.16 µM), 3 showed a mild to moderate α-glucosidase-inhibitory activity (IC50 = 45.1 µM), which may be attributed to the absence of a hydroxyl group at its xanthone core. Isomeric compounds 1 and 2 significantly enhanced IGABA with similar efficacy, while 3 was inactive, which may be attributed to its notable structural difference (cyclic ether substitution) compared to compounds 1 and 2. H. revolutum stem contains xanthones with α-glucosidase-inhibitory potential, which also enhance IGABA and could be further studied as a medicinal plant for managing GABAA receptor-mediated mental disorders and/or diabetes. Full article
Show Figures

Figure 1

17 pages, 2063 KB  
Article
Comprehensive UPLC-MS/MS Method for Quantifying Four Key Intestinal Permeability Markers in Caco-2 Models
by Luciana Silva de Araújo, Eduardo José Crevelin, Luiz Alberto Beraldo de Moraes and Niege Araçari Jacometti Cardoso Furtado
Molecules 2025, 30(17), 3477; https://doi.org/10.3390/molecules30173477 - 24 Aug 2025
Viewed by 525
Abstract
A comprehensive UPLC-MS/MS method was developed and validated for the simultaneous separation and quantification of atenolol, propranolol, quinidine, and verapamil, using established intestinal permeability standards in the Caco-2 cell monolayer model. This in vitro model is widely accepted for predicting intestinal drug permeability [...] Read more.
A comprehensive UPLC-MS/MS method was developed and validated for the simultaneous separation and quantification of atenolol, propranolol, quinidine, and verapamil, using established intestinal permeability standards in the Caco-2 cell monolayer model. This in vitro model is widely accepted for predicting intestinal drug permeability and is formally recognized by global regulatory agencies, including the FDA, EMA, and WHO, as a surrogate for assessing drug permeability in biowaiver applications under the Biopharmaceutics Classification System (BCS) framework. Despite its regulatory importance, standardized methods for the simultaneous quantification of key permeability markers remain scarce. The selected compounds represent distinct transport pathways: paracellular (atenolol), passive transcellular (propranolol, verapamil), and P-glycoprotein-mediated efflux (quinidine). Method validation followed FDA guidelines and demonstrated high selectivity, linearity (r2 > 0.998), precision, and accuracy. Solid-phase extraction enhanced recovery and reduced matrix effects. Application to Caco-2 permeability assays confirmed expected transport profiles, including P-gp inhibition effects with verapamil. By integrating multiple analytes in a single workflow, the method improves analytical throughput, supports mechanistic interpretation, and ensures consistency across assays. This advanced separation strategy, combined with sensitive mass spectrometric detection, supports regulatory and BCS-based classification studies, contributing to the standardization of permeability assessments in drug development. Full article
Show Figures

Graphical abstract

Back to TopTop