molecules-logo

Journal Browser

Journal Browser

Collection of Scientific Papers by Outstanding Scientists in the Field of Bioorganic Chemistry

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Bioorganic Chemistry".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 3257

Special Issue Editors


E-Mail Website
Guest Editor
Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
Interests: bioorganic chemistry; catalytic sensor/effector agents; epistemology; intracellular diagnostics; nanotechnology; natural products; reactive sulfur and selenium species; redox regulation via the cellular thiolstat
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is my pleasure to invite you to submit manuscripts to this Special Issue entitled “Collection of Scientific Papers by Outstanding Scientists in the Field of Bioorganic Chemistry”. The main purpose of this Special Issue is to publish selected original scientific papers written by outstanding scientists describing research carried out on bioorganic chemistry using the latest technological achievements. Topics of interest include but are not limited to the following:

  • Enzyme inhibitors;
  • Enzyme immobilization and controlled enzyme immobilization;
  • Biocatalysis (ribozymes and catalytic antibodies);
  • Biosynthesis;
  • Immunochemical techniques;
  • Membrane chemistry;
  • Protein and small biomolecules;
  • Peptides chemistry;
  • Biopolymers and artificial supramolecular assemblies;
  • Molecular recognition of nucleic acids;
  • Bioactive lipids;
  • Non-natural amino acids;
  • Mass spectrometry studies on biomolecules;
  • Bioactive peptides and proteins;
  • Biological signaling.

We kindly invite and encourage all research groups covering various bioorganic chemistry areas to submit contributions to this Special Issue.

Prof. Dr. Claus Jacob
Prof. Dr. Riccardo Spaccini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioorganic chemistry
  • enzyme inhibitors
  • biosynthesis
  • immunochemical techniques
  • peptides chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3439 KiB  
Article
Serendipitous Conversion of an Acetylamino Dideoxy-Octonic Acid Derivate into a Functionalized Carbohydrate–Pyrazole Conjugate and Investigation of the Method´s General Applicability
by Jelena K. Berl, Christian Czaschke, Ann-Kathrin Pramor, Christian B. W. Stark and Joachim Thiem
Molecules 2024, 29(20), 4885; https://doi.org/10.3390/molecules29204885 (registering DOI) - 15 Oct 2024
Viewed by 348
Abstract
By treatment of the peracetylated methylester of 4-acetylamino-2,4-dideoxy-d-glycero-d-galacto-octonic acid (ADOA-PAE) with nitrosyl tetrafluoroborate, a serendipitous formation of a highly functionalized carbohydrate–pyrazole conjugate was observed in 95% yield. This observation is remarkable, as it involves a five-step one-pot synthesis that [...] Read more.
By treatment of the peracetylated methylester of 4-acetylamino-2,4-dideoxy-d-glycero-d-galacto-octonic acid (ADOA-PAE) with nitrosyl tetrafluoroborate, a serendipitous formation of a highly functionalized carbohydrate–pyrazole conjugate was observed in 95% yield. This observation is remarkable, as it involves a five-step one-pot synthesis that proceeds via an 1,3-acyl shift and a 1,5-electrocyclization, which usually requires thermal conditions; however, the reaction occurred at a temperature of 0 °C. Additionally, the excellent yield of the carbohydrate-decorated pyrazole and the regiospecificity of the cyclization are of particular interest, as regioselectivity is always a challenge in pyrazole synthesis. Subsequently, this novel access to pyrazoles starting from N-acetyl-allyl amides via nitrosation and electrocyclization was investigated. In addition, mechanistic studies for the formation of substituted pyrazoles of type were carried out. Full article
Show Figures

Figure 1

9 pages, 918 KiB  
Article
Differences in the Renal Accumulation of Radiogallium-Labeled (Glu)14 Peptides Containing Different Optical Isomers of Glutamic Acid
by Kazuma Ogawa, Kota Nishizawa, Kenji Mishiro, Masayuki Munekane, Takeshi Fuchigami, Hiroaki Echigo, Hiroshi Wakabayashi and Seigo Kinuya
Molecules 2024, 29(17), 3993; https://doi.org/10.3390/molecules29173993 - 23 Aug 2024
Viewed by 472
Abstract
Acidic amino acid peptides have a high affinity for bone. Previously, we demonstrated that radiogallium complex-conjugated oligo-acidic amino acids possess promising properties as bone-seeking radiopharmaceuticals. Here, to elucidate the effect of stereoisomers of Glu in Glu-containing peptides [(Glu)14] on their accumulation [...] Read more.
Acidic amino acid peptides have a high affinity for bone. Previously, we demonstrated that radiogallium complex-conjugated oligo-acidic amino acids possess promising properties as bone-seeking radiopharmaceuticals. Here, to elucidate the effect of stereoisomers of Glu in Glu-containing peptides [(Glu)14] on their accumulation in the kidney, the biodistributions of [67Ga]Ga-N,N′-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid-conjugated (l-Glu)14 ([67Ga]Ga-HBED-CC-(l-Glu)14), [67Ga]Ga-HBED-CC-(d-Glu)14, [67Ga]Ga-HBED-CC-(dl-Glu)14, and [67Ga]Ga-HBED-CC-(d-Glu-l-Glu)7 were compared. Although the accumulation of these compounds in the bone was comparable, their kidney accumulation and retention were strikingly different, with [67Ga]Ga-HBED-CC-(d-Glu-l-Glu)7 exhibiting the lowest level of kidney accumulation among these compounds. Repeated d- and l-peptides may be a useful method for reducing renal accumulation in some cases. Full article
Show Figures

Figure 1

27 pages, 4047 KiB  
Article
Synthesis of Rhodamine-Conjugated Lupane Type Triterpenes of Enhanced Cytotoxicity
by Toni C. Denner, Niels V. Heise, Sophie Hoenke and René Csuk
Molecules 2024, 29(10), 2346; https://doi.org/10.3390/molecules29102346 - 16 May 2024
Cited by 1 | Viewed by 890
Abstract
Various conjugates with rhodamines were prepared by starting with betulinic acid (BA) and platanic acid (PA). The molecules homopiperazine and piperazine, which were identified in earlier research, served as linkers between the rhodamine and the triterpene. The pentacyclic triterpene’s [...] Read more.
Various conjugates with rhodamines were prepared by starting with betulinic acid (BA) and platanic acid (PA). The molecules homopiperazine and piperazine, which were identified in earlier research, served as linkers between the rhodamine and the triterpene. The pentacyclic triterpene’s ring A was modified with two acetyloxy groups in order to possibly boost its cytotoxic activity. The SRB assays’ cytotoxicity data showed that conjugates 1322, derived from betulinic acid, had a significantly higher cytotoxicity. Of these hybrids, derivatives 19 (containing rhodamine B) and 22 (containing rhodamine 101) showed the best values with EC50 = 0.016 and 0.019 μM for A2780 ovarian carcinoma cells. Additionally, based on the ratio of EC50 values, these two compounds demonstrated the strongest selectivity between malignant A2780 cells and non-malignant NIH 3T3 fibroblasts. A375 melanoma cells were used in cell cycle investigations, which showed that the cells were halted in the G1/G0 phase. Annexin V/FITC/PI staining demonstrated that the tumor cells were affected by both necrosis and apoptosis. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 6624 KiB  
Review
Bond Formation at C8 in the Nucleoside and Nucleotide Purine Scaffold: An Informative Selection
by Kjell Undheim
Molecules 2024, 29(8), 1815; https://doi.org/10.3390/molecules29081815 - 17 Apr 2024
Viewed by 1078
Abstract
This paper presents methods for the introduction and exchange of substituents in a nucleobase and its nucleosides and nucleotides with emphasis on the C8-position in the purine skeleton. The nucleobase is open for electrophilic and nucleophilic chemistry. The nucleophilic chemistry consists mainly of [...] Read more.
This paper presents methods for the introduction and exchange of substituents in a nucleobase and its nucleosides and nucleotides with emphasis on the C8-position in the purine skeleton. The nucleobase is open for electrophilic and nucleophilic chemistry. The nucleophilic chemistry consists mainly of displacement reactions when the C8-substituent is a good leaving group such as a halogen atom. The heteroatom in amines, sulfides, or oxides is a good nucleophile. Halides are good reaction partners. Metal-promoted cross-coupling reactions are important for carbylations. Direct oxidative metalation reactions using sterically hindered metal amides offer chemo- and regio-selectivity besides functional tolerance and simplicity. The carbon site is highly nucleophilic after metalation and adds electrophiles resulting in chemical bond formation. Conditions for metal-assisted reactions are described for nucleobases and their glycosides. Full article
Show Figures

Graphical abstract

Back to TopTop