molecules-logo

Journal Browser

Journal Browser

Recent Advance in Supramolecular Chemistry

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Macromolecular Chemistry".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 657

Special Issue Editor


E-Mail Website
Guest Editor
College of Chemistry, Nankai University, Tianjin 300071, China
Interests: supramolecular chemistry; biomaterial

Special Issue Information

Dear Colleagues,

Supramolecular chemistry is a field that investigates molecular recognition and self-assemblies resulting from noncovalent interactions of molecules. This area of research enhances our comprehension of intermolecular interactions, condensed phases, and complex biological structures while also yielding valuable tools for use in diverse applications such as sensing, catalysis, molecular machines, material science, and biomedicine. The inherent dynamic noncovalent interactions confer numerous advantages to supramolecular systems, such as facile construction, self-healing capabilities, adaptability, and responsiveness to external stimuli. Despite the abundance of reported supramolecular systems in recent decades, developing novel supramolecules with distinctive structures and tailored properties remains a critical and cutting-edge research focus within supramolecular chemistry.

This Special Issue will concentrate on the recent advancements and innovations in supramolecular chemistry, providing perspectives on its potential practical implications and fostering cross-disciplinary research endeavors. Emphasis will be placed on investigations on the development of host–guest chemistry and assembly units and their exploration in various applications.

Dr. Wen-Chao Geng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • supramolecular chemistry
  • molecular recognition
  • self-assembly
  • supramolecular materials
  • macrocycles

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 5868 KiB  
Article
The Role of the Organic Moiety in the Diffusion and Transport of Carboxylates into Liposomes
by Aaron Torres-Huerta and Hennie Valkenier
Molecules 2024, 29(21), 5124; https://doi.org/10.3390/molecules29215124 - 30 Oct 2024
Viewed by 508
Abstract
Understanding carboxylate transport through lipid membranes under physiological conditions is critical in biomedicine and biotechnology, as it allows for the emulation of biological membrane functions and can enhance the absorption of hydrophobic carboxylate-based drugs. However, the structural diversity of carboxylates has made it [...] Read more.
Understanding carboxylate transport through lipid membranes under physiological conditions is critical in biomedicine and biotechnology, as it allows for the emulation of biological membrane functions and can enhance the absorption of hydrophobic carboxylate-based drugs. However, the structural diversity of carboxylates has made it challenging to study their transport, and the limited available examples do not provide a comprehensive understanding of the role of the organic moiety in this process. Here, we present an in-depth analysis of the diffusion and transport of various aliphatic and aromatic carboxylates into liposomes. We assessed the influence of their size, number of carboxylate groups, and presence of hydroxyl groups. Our findings from fluorescence assays, using lucigenin and HPTS as probes, revealed that most carboxylates can spontaneously diffuse into liposomes in their protonated state, facilitated by the efflux of HNO3 when using NaNO3 solutions at pH 7. The Cl-ISE assay showed chloride/carboxylate exchange by a synthetic anion transporter. Clear trends were observed when the organic moiety was systematically varied, with a particular enhancement of anion transport by the presence of hydroxyl groups in the aromatic carboxylates. Our findings provide insights into the processes by which carboxylates can enter liposomes, which can contribute to understanding the transport of other biologically relevant organic anions. Full article
(This article belongs to the Special Issue Recent Advance in Supramolecular Chemistry)
Show Figures

Graphical abstract

Back to TopTop