molecules-logo

Journal Browser

Journal Browser

Carbon Materials in Materials Chemistry—2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 567

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
Interests: nanomaterials; biomaterials; carbon nanostructures; composite and hybrid materials; biomedical applications of functional materials; therapeutic devices; surface chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Carbon materials comprise carbon allotropes with different spatial arrangements of carbon atoms, mainly consisting of fullerenes (0D), carbon nanotubes (1D), graphene (2D), and graphite/diamond (3D), with other systems consisting of quasi-spherical graphene structures (graphene quantum dots), elongated strips of graphene (carbon nanoribbons), and rolled graphene sheets with a closed horn-shaped tip (carbon nanohorns).

Carbon materials have attracted a great deal of interest by virtue of their excellent mechanical, thermal, and optical properties, as well as their high biocompatibility after tailored surface functionalization. Carbon materials are widely applied for energy storage, hydrogen storage, electrochemical supercapacitors, field-emitting devices, transistors, nanoprobes and sensors, composite material, and engineered materials for biomedical applications (e.g., drug delivery and tissue engineering).

This Special Issue aims to collect research or review articles focused on the synthesis, characterization, and functionalization of carbon materials from a multidisciplinary point of view, coupling knowledge in chemistry, physics, engineering, and material science but also biology and medicine, to highlight recent advances in this field and act as a platform for knowledge exchange.

Dr. Giuseppe Cirillo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbon materials
  • hybrid materials
  • chemical functionalization
  • sensing materials
  • materials for biomedical applications
  • nanoelectronics
  • mechanical reinforcement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4274 KiB  
Article
ZnO–Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells
by Lorenzo Francesco Madeo, Christine Schirmer, Giuseppe Cirillo, Ayah Nader Asha, Rasha Ghunaim, Samuel Froeschke, Daniel Wolf, Manuela Curcio, Paola Tucci, Francesca Iemma, Bernd Büchner, Silke Hampel and Michael Mertig
Molecules 2024, 29(16), 3770; https://doi.org/10.3390/molecules29163770 - 9 Aug 2024
Viewed by 414
Abstract
A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of [...] Read more.
A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized. The ZnO-to-GO ratio was determined through thermogravimetric analysis, while scanning electron microscopy and transmission electron microscopy were used to provide insight into the morphology of the nanocomposite. Using energy-dispersive X-ray spectroscopy, it was possible to confirm that the graphene flakes were homogeneously coated with ZnO. The crystallite size of the ZnO nanoparticles in the new composite was determined using X-ray powder diffraction. The capacity of Z-G to enhance the toxicity of the anticancer drug Paclitaxel towards breast cancer cells was assessed via a cell viability study, showing the remarkable anticancer activity of the obtained system. Such results support the potential use of Z-G as an anticancer agent in combination with a common chemotherapeutic like Paclitaxel, leading to new chemotherapeutic formulations. Full article
(This article belongs to the Special Issue Carbon Materials in Materials Chemistry—2nd Edition)
Show Figures

Figure 1

Back to TopTop