molecules-logo

Journal Browser

Journal Browser

Structure, Chemical Analysis, Biosynthesis, Metabolism, Molecular Engineering and Biological Functions of Phytoalexins

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (30 June 2017) | Viewed by 99276

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Special Issue Information

Dear Colleagues,

Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. As such, they take part in an intricate defense system, which enables plants to control invading microorganisms. Phytoalexins display an enormous diversity belonging to various chemical families such as isoflavones, isoflavanones, pterocarpans, isoflavans, flavanones, coumestans, furanoacetylenes, phenylpropanoids, steroid glycoalkaloids, norsesquiterpenoids/sesquiterpenoids, coumarins, diterpenes, ent-kaurane-related diterpenoids, acidic sesquiterpenoids, 3-deoxyanthocyanidins, naphthaldehydes, indoles, stilbenes, etc. This Special Issue is the continuation of that published in 2014-2015 entitled "Phytoalexins: Current Progress and Future Prospects" https://www.mdpi.com/journal/molecules/special_issues/phytoalexins-progress. Nineteen articles were published in this first issue, including both research and review papers. As phytoalexins constitute a very active field of research, we feel it necessary to have a second Special Issue dedicated to the study of those compounds. Original and review papers dealing with all aspects of phytoalexins, including structure elucidation; chemical synthesis; methods for phytoalexin analysis in plant extracts or biological fluids; biosynthesis studies including modulation of phytoalexin synthesis; engineering of phytoalexin biochemical pathways in plants and microbes; biological roles in health and disease; structure/activity relationships; phytoalexin metabolism in planta and by micro-organisms, transport mechanisms and bioproduction by microorganisms or plant cell systems, etc., are welcome for inclusion in this Special Issue of Molecules.

Prof. Dr. Philippe Jeandet
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytoalexin structure elucidation
  • chemical synthesis
  • methods for phytoalexin analysis
  • biosynthetic studies and modulation of phytoalexin biosynthesis
  • molecular engineering in plants and microbes / applications
  • biological activity against microorganisms
  • role in human health
  • structure/activity relationships
  • plant and fungal metabolisms
  • transport mechanisms
  • bioproduction by microorganisms or plant cell systems, etc

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

189 KiB  
Editorial
Structure, Chemical Analysis, Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Phytoalexins
by Philippe Jeandet
Molecules 2018, 23(1), 61; https://doi.org/10.3390/molecules23010061 - 28 Dec 2017
Cited by 13 | Viewed by 5524
Abstract
Plants in their natural environment are facing large numbers of pathogenic microorganisms, mainly fungi and bacteria.[…] Full article

Research

Jump to: Editorial, Review

233 KiB  
Article
Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency
by Virginie Aires, Dominique Delmas, Fatima Djouadi, Jean Bastin, Mustapha Cherkaoui-Malki and Norbert Latruffe
Molecules 2018, 23(1), 7; https://doi.org/10.3390/molecules23010007 - 22 Dec 2017
Cited by 13 | Viewed by 4268
Abstract
Carnitine palmitoyltransferase-2 (CPT2) is a mitochondrial enzyme involved in long-chain fatty acid entry into mitochondria for their β-oxidation and energy production. Two phenotypes are associated with the extremely reduced CPT2 activity in genetically deficient patients: neonatal lethality or, in milder forms, [...] Read more.
Carnitine palmitoyltransferase-2 (CPT2) is a mitochondrial enzyme involved in long-chain fatty acid entry into mitochondria for their β-oxidation and energy production. Two phenotypes are associated with the extremely reduced CPT2 activity in genetically deficient patients: neonatal lethality or, in milder forms, myopathy. Resveratrol (RSV) is a phytophenol produced by grape plant in response to biotic or abiotic stresses that displays anti-oxidant properties, in particular through AP-1, NFκB, STAT-3, and COX pathways. Some beneficiary effects of RSV are due to its modulation of microRNA (miRNA) expression. RSV can enhance residual CPT2 activities in human fibroblasts derived from CPT2-deficient patients and restores normal fatty acid oxidation rates likely through stimulation of mitochondrial biogenesis. Here, we report changes in miRNA expression linked to CPT2-deficiency, and we identify miRNAs whose expression changed following RSV treatment of control or CPT2-deficient fibroblasts isolated from patients. Our findings suggest that RSV consumption might exert beneficiary effects in patients with CPT2-deficiency. Full article
Show Figures

Graphical abstract

3068 KiB  
Article
The Effect of Resveratrol on Cell Viability in the Burkitt’s Lymphoma Cell Line Ramos
by Paola Jara, Johana Spies, Constanza Cárcamo, Yennyfer Arancibia, Gabriela Vargas, Carolina Martin, Mónica Salas, Carola Otth and Angara Zambrano
Molecules 2018, 23(1), 14; https://doi.org/10.3390/molecules23010014 - 21 Dec 2017
Cited by 21 | Viewed by 6868
Abstract
Resveratrol is a polyphenolic natural compound produced by a variety of crops. Currently, resveratrol is considered a multi-target anti-cancer agent with pleiotropic activity, including the ability to prevent the proliferation of malignant cells by inhibiting angiogenesis and curtailing invasive and metastatic factors in [...] Read more.
Resveratrol is a polyphenolic natural compound produced by a variety of crops. Currently, resveratrol is considered a multi-target anti-cancer agent with pleiotropic activity, including the ability to prevent the proliferation of malignant cells by inhibiting angiogenesis and curtailing invasive and metastatic factors in many cancer models. However, the molecular mechanisms mediating resveratrol-specific effects on lymphoma cells remain unknown. To begin tackling this question, we treated the Burkitt’s lymphoma cell line Ramos with resveratrol and assessed cell survival and gene expression. Our results suggest that resveratrol shows a significant anti-proliferative and pro-apoptotic activity on Ramos cells, inducing the DNA damage response, DNA repairing, and modulating the expression of several genes that regulate the apoptotic process and their proliferative activity. Full article
Show Figures

Graphical abstract

986 KiB  
Communication
Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144
by Laetitia Nivelle, Jane Hubert, Eric Courot, Nicolas Borie, Jean-Hugues Renault, Jean-Marc Nuzillard, Dominique Harakat, Christophe Clément, Laurent Martiny, Dominique Delmas, Philippe Jeandet and Michel Tarpin
Molecules 2017, 22(11), 1940; https://doi.org/10.3390/molecules22111940 - 9 Nov 2017
Cited by 16 | Viewed by 5752
Abstract
A new resveratrol dimer (1) called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D) and [...] Read more.
A new resveratrol dimer (1) called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) analyses including 1H, 13C, heteronuclear single-quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and correlation spectroscopy (COSY) as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) were used to characterize this compound and to unambiguously identify it as a new stilbene dimer, though its relative stereochemistry remained unsolved. Labruscol was recovered as a pure compound (>93%) in sufficient amounts (41 mg) to allow assessment of its biological activity (cell viability, cell invasion and apoptotic activity) on two different cell lines, including one human skin melanoma cancer cell line HT-144 and a healthy human dermal fibroblast (HDF) line. This compound induced almost 100% of cell viability inhibition in the cancer line at a dose of 100 μM within 72 h of treatment. However, at all tested concentrations and treatment times, resveratrol displayed an inhibition of the cancer line viability higher than that of labruscol in the presence of fetal bovine serum. Both compounds also showed differential activities on healthy and cancer cell lines. Finally, labruscol at a concentration of 1.2 μM was shown to reduce cell invasion by 40%, although no similar activity was observed with resveratrol. The cytotoxic activity of this newly-identified dimer is discussed. Full article
Show Figures

Figure 1

19384 KiB  
Article
The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation
by Agnieszka Woźniak, Kinga Drzewiecka, Jacek Kęsy, Łukasz Marczak, Dorota Narożna, Marcin Grobela, Rafał Motała, Jan Bocianowski and Iwona Morkunas
Molecules 2017, 22(9), 1404; https://doi.org/10.3390/molecules22091404 - 24 Aug 2017
Cited by 32 | Viewed by 6326
Abstract
The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea (Pisum sativum L. cv. Cysterski) [...] Read more.
The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea (Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid (Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum. Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis. Full article
Show Figures

Graphical abstract

2546 KiB  
Article
Inhibitors of the Detoxifying Enzyme of the Phytoalexin Brassinin Based on Quinoline and Isoquinoline Scaffolds
by M. Soledade C. Pedras, Abbas Abdoli and Vijay K. Sarma-Mamillapalle
Molecules 2017, 22(8), 1345; https://doi.org/10.3390/molecules22081345 - 14 Aug 2017
Cited by 19 | Viewed by 6707
Abstract
The detoxification of the phytoalexin brassinin to indole-3-carboxaldehyde and S-methyl dithiocarbamate is catalyzed by brassinin oxidase (BOLm), an inducible fungal enzyme produced by the plant pathogen Leptosphaeria maculans. Twenty-six substituted quinolines and isoquinolines are synthesized and evaluated for antifungal activity against [...] Read more.
The detoxification of the phytoalexin brassinin to indole-3-carboxaldehyde and S-methyl dithiocarbamate is catalyzed by brassinin oxidase (BOLm), an inducible fungal enzyme produced by the plant pathogen Leptosphaeria maculans. Twenty-six substituted quinolines and isoquinolines are synthesized and evaluated for antifungal activity against L. maculans and inhibition of BOLm. Eleven compounds that inhibit BOLm activity are reported, of which 3-ethyl-6-phenylquinoline displays the highest inhibitory effect. In general, substituted 3-phenylquinolines show significantly higher inhibitory activities than the corresponding 2-phenylquinolines. Overall, these results indicate that the quinoline scaffold is a good lead to design paldoxins (phytoalexin detoxification inhibitors) that inhibit the detoxification of brassinin by L. maculans. Full article
Show Figures

Figure 1

3438 KiB  
Article
Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I
by Kelli Farrell, Md Asraful Jahan and Nik Kovinich
Molecules 2017, 22(8), 1261; https://doi.org/10.3390/molecules22081261 - 27 Jul 2017
Cited by 26 | Viewed by 7664
Abstract
Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer [...] Read more.
Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer activities and is not economical to synthesize. Here, we tested a range of source tissues from soybean, in addition to chemical and biotic elicitors, to understand how to enhance the bioproduction of glyceollin I. Combining the inorganic chemical silver nitrate (AgNO3) with the wall glucan elicitor (WGE) from the soybean pathogen Phytophthora sojae had an additive effect on the elicitation of soybean seeds, resulting in a yield of up to 745.1 µg gt−1 glyceollin I. The additive elicitation suggested that the biotic and chemical elicitors acted largely by separate mechanisms. WGE caused a major accumulation of phytoalexin gene transcripts, whereas AgNO3 inhibited and enhanced the degradation of glyceollin I and 6″-O-malonyldaidzin, respectively. Full article
Show Figures

Graphical abstract

2393 KiB  
Article
Systemic Induction of the Defensin and Phytoalexin Pisatin Pathways in Pea (Pisum sativum) against Aphanomyces euteiches by Acetylated and Nonacetylated Oligogalacturonides
by Sameh Selim, Jean Sanssené, Stéphanie Rossard and Josiane Courtois
Molecules 2017, 22(6), 1017; https://doi.org/10.3390/molecules22061017 - 19 Jun 2017
Cited by 26 | Viewed by 7592
Abstract
Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea (Pisum sativum). In the present study, we investigated the elicitor activity of two fractions of OGs, [...] Read more.
Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea (Pisum sativum). In the present study, we investigated the elicitor activity of two fractions of OGs, with polymerization degrees (DPs) of 2–25, in pea against Aphanomyces euteiches. One fraction was nonacetylated (OGs − Ac) whereas the second one was 30% acetylated (OGs + Ac). OGs were applied by injecting the upper two rachises of the plants at three- and/or four-weeks-old. Five-week-old roots were inoculated with 105 zoospores of A. euteiches. The root infection level was determined at 7, 10 and 14 days after inoculation using the quantitative real-time polymerase chain reaction (qPCR). Results showed significant root infection reductions namely 58, 45 and 48% in the plants treated with 80 µg OGs + Ac and 59, 56 and 65% with 200 µg of OGs − Ac. Gene expression results showed the upregulation of genes involved in the antifungal defensins, lignans and the phytoalexin pisatin pathways and a priming effect in the basal defense, SA and ROS gene markers as a response to OGs. The reduction of the efficient dose in OGs + Ac is suggesting that acetylation is necessary for some specific responses. Our work provides the first evidence for the potential of OGs in the defense induction in pea against Aphanomyces root rot. Full article
Show Figures

Figure 1

869 KiB  
Article
4-Hydroxy-7-methyl-3-phenylcoumarin Suppresses Aflatoxin Biosynthesis via Downregulation of aflK Expressing Versicolorin B Synthase in Aspergillus flavus
by Young-Sun Moon, Leesun Kim, Hyang Sook Chun and Sung-Eun Lee
Molecules 2017, 22(5), 712; https://doi.org/10.3390/molecules22050712 - 29 Apr 2017
Cited by 14 | Viewed by 5459
Abstract
Naturally occurring coumarins possess antibacterial and antifungal properties. In this study, these natural and synthetic coumarins were used to evaluate their antifungal activities against Aspergillus flavus, which produces aflatoxins. In addition to control antifungal activities, antiaflatoxigenic properties were also determined using a [...] Read more.
Naturally occurring coumarins possess antibacterial and antifungal properties. In this study, these natural and synthetic coumarins were used to evaluate their antifungal activities against Aspergillus flavus, which produces aflatoxins. In addition to control antifungal activities, antiaflatoxigenic properties were also determined using a high-performance liquid chromatography in conjunction with fluorescence detection. In this study, 38 compounds tested and 4-hydroxy-7-methyl-3-phenyl coumarin showed potent antifungal and antiaflatoxigenic activities against A. flavus. Inhibitory mode of antiaflatoxigenic action by 4-hydroxy-7-methyl-3-phenyl coumarin was based on the downregulation of aflD, aflK, aflQ, and aflR in aflatoxin biosynthesis. In the cases of coumarins, antifungal and aflatoxigenic activities are highly related to the lack of diene moieties in the structures. In structurally related compounds, 2,3-dihydrobenzofuran exhibited antifungal and antiaflatoxigenic activities against A. flavus. The inhibitory mode of antiaflatoxigenic action by 2,3-dihydrobenzofuran was based on the inhibition of the transcription factor (aflS) in the aflatoxin biosynthesis pathway. These potent inhibitions of 2,3-dihydrobenzofuran and 4-hydroxy-7-methyl-3-phenyl coumarin on the Aspergillus growth and production of aflatoxins contribute to the development of new controlling agents to mitigate aflatoxin contamination. Full article
Show Figures

Figure 1

4621 KiB  
Article
Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria
by Wee Xian Lee, Dayang Fredalina Basri and Ahmad Rohi Ghazali
Molecules 2017, 22(3), 463; https://doi.org/10.3390/molecules22030463 - 17 Mar 2017
Cited by 37 | Viewed by 8174
Abstract
The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination [...] Read more.
The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5) against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents. Full article
Show Figures

Figure 1

3908 KiB  
Article
A Focused Multiple Reaction Monitoring (MRM) Quantitative Method for Bioactive Grapevine Stilbenes by Ultra-High-Performance Liquid Chromatography Coupled to Triple-Quadrupole Mass Spectrometry (UHPLC-QqQ)
by Elías Hurtado-Gaitán, Susana Sellés-Marchart, Ascensión Martínez-Márquez, Antonio Samper-Herrero and Roque Bru-Martínez
Molecules 2017, 22(3), 418; https://doi.org/10.3390/molecules22030418 - 7 Mar 2017
Cited by 17 | Viewed by 8621
Abstract
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. [...] Read more.
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans-resveratrol, trans-piceid, trans-piceatannol, trans-pterostilbene, and trans-ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis-piceid and trans-resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine. Full article
Show Figures

Figure 1

3201 KiB  
Article
Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures
by Leo-Paul Tisserant, Aziz Aziz, Nathalie Jullian, Philippe Jeandet, Christophe Clément, Eric Courot and Michèle Boitel-Conti
Molecules 2016, 21(12), 1703; https://doi.org/10.3390/molecules21121703 - 10 Dec 2016
Cited by 23 | Viewed by 8590
Abstract
Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim [...] Read more.
Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim of setting up a cost-effective and high purity production of resveratrol derivatives, hairy root lines were established from Vitis vinifera cv Pinot Noir 40024 to study the organ-specific production of various stilbenes. Biomass increase and stilbene production by roots were monitored during flask experiments. Although there was a constitutive production of stilbenes in roots, an induction of stilbene synthesis by methyl jasmonate (MeJA) after 18 days of growth led to further accumulation of ε-viniferin, δ-viniferin, resveratrol and piceid. The use of 100 µM MeJA after 18 days of culture in the presence of methyl-β-cyclodextrins (MCDs) improved production levels, which reached 1034µg/g fresh weight (FW) in roots and 165 mg/L in the extracellular medium, corresponding to five-and 570-foldincrease in comparison to control. Whereas a low level of stilbene excretion was measured in controls, addition of MeJA induced excretion of up to 37% of total stilbenes. The use of MCDs increased the excretion phenomenon even more, reaching up to 98%. Our results demonstrate the ability of grapevine hairy roots to produce various stilbenes. This production was significantly improved in response to elicitation by methyl jasmonate and/or MCDs. This supports the interest of using hairy roots as a potentially valuable system for producing resveratrol derivatives. Full article
Show Figures

Figure 1

969 KiB  
Article
Simultaneous Ultra Performance Liquid Chromatography Determination and Antioxidant Activity of Linarin, Luteolin, Chlorogenic Acid and Apigenin in Different Parts of Compositae Species
by Seung Hwan Hwang, Ji Hun Paek and Soon Sung Lim
Molecules 2016, 21(11), 1609; https://doi.org/10.3390/molecules21111609 - 23 Nov 2016
Cited by 18 | Viewed by 6552
Abstract
Linarin (LA), luteolin (LE), chlorogenic acid (CA) and apigenin (AP) are four major flavonoids with various promising bioactivities found in Compositae (COP) species. A reliable, reproducible and accurate method for the simultaneous and quantitative determination of these four major flavonoids by Ultra Performance [...] Read more.
Linarin (LA), luteolin (LE), chlorogenic acid (CA) and apigenin (AP) are four major flavonoids with various promising bioactivities found in Compositae (COP) species. A reliable, reproducible and accurate method for the simultaneous and quantitative determination of these four major flavonoids by Ultra Performance Liquid Chromatography (UPLC) analysis was developed. This method should be appropriate for the quality assurance of COP. The UPLC separation was carried out using an octadecylsilane (ODS) Hypersil (2.1 mm × 250 mm, 1.9 μm) and a mobile phase composed of acetonitrile and 0.1% formic acid in water at a flow rate 0.44 mL/min and ultraviolet (UV) detection 254 nm. Gradient elution was employed. The method was precise, with relative standard deviation below 3.0% and showed excellent linearity (R2 > 0.999). The recoveries for the four flavonoids in COP were between 95.49%–106.23%. The average contents of LA, LE, CA and AP in different parts (flower, leave and stem) of COP were between 0.64–1.47 g/100 g, 0.66–0.89 g/100 g, 0.32–0.52 g/100 g and 0.16–0.18 g/100 g, respectively. The method was accurate and reproducible and it can provide a quantitative basis for quality control of COP. Full article
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

572 KiB  
Review
Antiproliferative Effect of Indole Phytoalexins
by Martina Chripkova, Frantisek Zigo and Jan Mojzis
Molecules 2016, 21(12), 1626; https://doi.org/10.3390/molecules21121626 - 26 Nov 2016
Cited by 64 | Viewed by 9554
Abstract
Indole phytoalexins from crucifers have been shown to exhibit significant anti-cancer, chemopreventive, and antiproliferative activity. Phytoalexins are natural low molecular antimicrobial compounds that are synthesized and accumulated in plants after their exposure to pathogenic microorganisms. Most interestingly, crucifers appear to be the only [...] Read more.
Indole phytoalexins from crucifers have been shown to exhibit significant anti-cancer, chemopreventive, and antiproliferative activity. Phytoalexins are natural low molecular antimicrobial compounds that are synthesized and accumulated in plants after their exposure to pathogenic microorganisms. Most interestingly, crucifers appear to be the only plant family producing sulfur-containing indole phytoalexins. The mechanisms underlying its anti-cancer properties are unknown. Isolation from cruciferous plants does not provide sufficient quantities of indole phytoalexins and, for biological screening, they are usually obtainable through synthesis. Understanding the molecular mechanism of the action of these substances and their structure-activity relationships is quite important in the development of new analogs with a more favorable profile of biological activities. In this review, we present the key features of indole phytoalexins, mainly their antiproliferative ativities. Full article
Show Figures

Figure 1

Back to TopTop