Advance in Nanophotonics

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanophotonics Materials and Devices".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 21301

Special Issue Editor


E-Mail Website
Guest Editor
Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
Interests: fibre optics; quantum electronics and lasers; fibre optics and waveguides; semiconductor

Special Issue Information

Dear Colleagues,

There have been numerous advances in nanophotonics in areas such as nanowaveguides and devices, nanolasers, photonic crystals, semiconductor dots, quantum optics, quantum communications, nanofibers, nanowires, and the usage of nanomaterials in optical fiber lasers.

Specifically, the area of nanophotonics covers the science and engineering of light–matter interactions in the region of wavelength and subwavelength scales, whereby the nanostructure of matter controls the interaction.

Another area in the science of nanophotonics that has generated interest is two-photon processes in materials. This process has opened up new applications such as fluorescent imaging, sensitization, next-generation nanolithography, and many others.

In this Special Issue, we invite the submission of research papers highlighting the integration of nanotechnology and photonics to be considered for publication.

Prof. Dr. Harith Ahmad
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nanophotonics
  • Nanowaveguides
  • Nanolasers
  • Quantum optics
  • Nanofibers
  • Nanowires

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 6632 KiB  
Article
A Topological Multichannel Add-Drop Filter Based on Gyromagnetic Photonic Crystals
by Gangchao Tang, Yuhao Huang, Jianfeng Chen, Zhi-Yuan Li and Wenyao Liang
Nanomaterials 2023, 13(11), 1711; https://doi.org/10.3390/nano13111711 - 23 May 2023
Cited by 5 | Viewed by 1443
Abstract
We theoretically proposed a topological multichannel add-drop filter (ADF) and studied its unique transmission properties. The multichannel ADF was composed of two one-way gyromagnetic photonic crystal (GPC) waveguides, a middle ordinary waveguide, and two square resonators sandwiched between them, which can be regarded [...] Read more.
We theoretically proposed a topological multichannel add-drop filter (ADF) and studied its unique transmission properties. The multichannel ADF was composed of two one-way gyromagnetic photonic crystal (GPC) waveguides, a middle ordinary waveguide, and two square resonators sandwiched between them, which can be regarded as two paralleling four-port nonreciprocal filters. The two square resonators were applied with opposite external magnetic fields (EMFs) to support one-way states propagating clockwise and counterclockwise, respectively. On the basis of the fact that the resonant frequencies can be tuned by the EMFs applied to the square resonators, when the intensities of EMFs were the same, the multichannel ADF behaved as a power splitter with a 50/50 division ratio and high transmittance; otherwise, it functioned as a demultiplexer to separate two different frequencies efficiently. Such a multichannel ADF not only possesses excellent filtering performance but also has strong robustness against various defects due to its topological protection property. Moreover, each output port can be switched dynamically, and each transmission channel can operate independently with little crosstalk. Our results have the potential for developing topological photonic devices in wavelength division multiplexing systems. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

12 pages, 3863 KiB  
Article
Laser-Induced Chirality of Plasmonic Nanoparticles Embedded in Porous Matrix
by Anastasiia A. Sapunova, Yulia I. Yandybaeva, Roman A. Zakoldaev, Alexandra V. Afanasjeva, Olga V. Andreeva, Igor A. Gladskikh, Tigran A. Vartanyan and Daler R. Dadadzhanov
Nanomaterials 2023, 13(10), 1634; https://doi.org/10.3390/nano13101634 - 13 May 2023
Cited by 3 | Viewed by 1856
Abstract
Chiral plasmonic nanostructures have emerged as promising objects for numerous applications in nanophotonics, optoelectronics, biosensing, chemistry, and pharmacy. Here, we propose a novel method to induce strong chirality in achiral ensembles of gold nanoparticles via irradiation with circularly-polarized light of a picosecond Nd:YAG [...] Read more.
Chiral plasmonic nanostructures have emerged as promising objects for numerous applications in nanophotonics, optoelectronics, biosensing, chemistry, and pharmacy. Here, we propose a novel method to induce strong chirality in achiral ensembles of gold nanoparticles via irradiation with circularly-polarized light of a picosecond Nd:YAG laser. Embedding of gold nanoparticles into a nanoporous silicate matrix leads to the formation of a racemic mixture of metal nanoparticles of different chirality that is enhanced by highly asymmetric dielectric environment of the nanoporous matrix. Then, illumination with intense circularly-polarized light selectively modifies the particles with the chirality defined by the handedness of the laser light, while their “enantiomers” survive the laser action almost unaffected. This novel modification of the spectral hole burning technique leads to the formation of an ensemble of plasmonic metal nanoparticles that demonstrates circular dichroism up to 100 mdeg. An unforeseen peculiarity of the chiral nanostructures obtained in this way is that 2D and 3D nanostructures contribute almost equally to the observed circular dichroism signals. Thus, the circular dichroism is neither even nor odd under reversal of direction of light propagation. These findings will help guide the development of a passive optical modulator and nanoplatform for enhanced chiral sensing and catalysis. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

9 pages, 2398 KiB  
Communication
Quasi-2D Mn3Si2Te6 Nanosheet for Ultrafast Photonics
by Yan Lu, Zheng Zhou, Xuefen Kan, Zixin Yang, Haiqin Deng, Bin Liu, Tongtong Wang, Fangqi Liu, Xueyu Liu, Sicong Zhu, Qiang Yu and Jian Wu
Nanomaterials 2023, 13(3), 602; https://doi.org/10.3390/nano13030602 - 2 Feb 2023
Cited by 3 | Viewed by 2670
Abstract
The magnetic nanomaterial Mn3Si2Te6 is a promising option for spin-dependent electronic and magneto-optoelectronic devices. However, its application in nonlinear optics remains fanciful. Here, we demonstrate a pulsed Er-doped fiber laser (EDFL) based on a novel quasi-2D Mn3 [...] Read more.
The magnetic nanomaterial Mn3Si2Te6 is a promising option for spin-dependent electronic and magneto-optoelectronic devices. However, its application in nonlinear optics remains fanciful. Here, we demonstrate a pulsed Er-doped fiber laser (EDFL) based on a novel quasi-2D Mn3Si2Te6 saturable absorber (SA) with low pump power at 1.5 μm. The high-quality Mn3Si2Te6 crystals were synthesized by the self-flux method, and the ultrathin Mn3Si2Te6 nanoflakes were prepared by a simple mechanical exfoliation procedure. To the best of our knowledge, this is the first time laser pulses have been generated using quasi-2D Mn3Si2Te6. A stable pulsed laser at 1562 nm with a low threshold pump power of 60 mW was produced by integrating the Mn3Si2Te6 SA into an EDFL cavity. The maximum power of the output pulse is 783 μW. The repetition rate can vary from 24.16 to 44.44 kHz, with corresponding pulse durations of 5.64 to 3.41 µs. Our results indicate that the quasi-2D Mn3Si2Te6 is a promising material for application in ultrafast photonics. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

7 pages, 1601 KiB  
Article
Metallic On-Chip Light Concentrators Fabricated by In Situ Plasmonic Etching Technique
by Lihua Cha and Pan Li
Nanomaterials 2022, 12(23), 4195; https://doi.org/10.3390/nano12234195 - 25 Nov 2022
Viewed by 1246
Abstract
One-dimensional tapered metallic nanostructures are highly interesting for nanophotonic applications because of their plasmonic waveguiding and field-focusing properties. Here, we developed an in situ etching technique for unique tapered crystallized silver nanowire fabrication. Under the focused laser spot, plasmon-induced charge separation of chemically [...] Read more.
One-dimensional tapered metallic nanostructures are highly interesting for nanophotonic applications because of their plasmonic waveguiding and field-focusing properties. Here, we developed an in situ etching technique for unique tapered crystallized silver nanowire fabrication. Under the focused laser spot, plasmon-induced charge separation of chemically synthesized nanowires is excited, which triggers the uniaxial etching of silver nanowires along the radial direction with decreasing rate, forming tapered structures several micrometers long and with diameter attenuating from hundreds to tens of nanometers. These tapered metallic nanowires have smooth surfaces showing excellent performance for plasmonic waveguiding, and can be good candidates for nanocircuits and remote-excitation sources. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Graphical abstract

10 pages, 1991 KiB  
Article
Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement
by Yang Ming, Yuan Liu, Wei Chen, Yusen Yan and Huiguo Zhang
Nanomaterials 2022, 12(22), 4001; https://doi.org/10.3390/nano12224001 - 13 Nov 2022
Cited by 3 | Viewed by 1627
Abstract
The high designability of metamaterials has made them an attractive platform for devising novel optoelectronic devices. The demonstration of nonlinear metamaterials further indicates their potential in developing quantum applications. Here, we investigate designing nonlinear metamaterials consisting of the 3-fold (C3) rotationally symmetrical nanoantennas [...] Read more.
The high designability of metamaterials has made them an attractive platform for devising novel optoelectronic devices. The demonstration of nonlinear metamaterials further indicates their potential in developing quantum applications. Here, we investigate designing nonlinear metamaterials consisting of the 3-fold (C3) rotationally symmetrical nanoantennas for generating and modulating entangled photons in the spatial degrees of freedom. Through tailoring the geometry and orientation of the nanoantennas, the parametric down conversion process inside the metamaterials can be locally engineered to generate entangled states with desired spatial properties. As the orbital angular momentum (OAM) states are valuable for enhancing the data capacity of quantum information systems, the photonic OAM entanglement is practically considered. With suitable nanostructure design, the generation of OAM entangled states is shown to be effectively realized in the discussed nonlinear metamaterial system. The nonlinear metamaterials present a perspective to provide a flexible platform for quantum photonic applications. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

12 pages, 5668 KiB  
Article
Twisted Bands with Degenerate Points of Photonic Hypercrystals in Infrared Region
by Yaoxian Zheng, Qiong Wang, Mi Lin, Luigi Bibbò and Zhengbiao Ouyang
Nanomaterials 2022, 12(12), 1985; https://doi.org/10.3390/nano12121985 - 9 Jun 2022
Cited by 2 | Viewed by 1637
Abstract
Photonic hypercrystals (PHCs) are materials combining hyperbolic metamaterials (HMMs) with widely used photonic crystals. We found that finite-sized Type-I HMMs can support unique electromagnetic modes, which could be utilized in two-dimensional photonic crystals to achieve PHCs with twisted bands in the infrared region. [...] Read more.
Photonic hypercrystals (PHCs) are materials combining hyperbolic metamaterials (HMMs) with widely used photonic crystals. We found that finite-sized Type-I HMMs can support unique electromagnetic modes, which could be utilized in two-dimensional photonic crystals to achieve PHCs with twisted bands in the infrared region. Numerical investigation of the PHCs showed that the twisted bands have degenerate points that can support all-angle self-collimation effects. The behaviors of light beams change dramatically in such bands, which provides an effective method in controlling light propagation and can be applied as switching. The effect of the filling factor and the permittivity of the dielectric medium of the HMM on the twisted bands were studied. Furthermore, by considering the nonlinear effect of the dielectric layers, an all-optical switch working on the PHC twisted bands is proposed, which has low switching power and high extinction ratio (19.75 dB), superior to conventional HMM switches that require type transformation of metamaterial. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

13 pages, 4501 KiB  
Article
Simulation of a High-Performance Polarization Beam Splitter Assisted by Two-Dimensional Metamaterials
by Ruei-Jan Chang and Chia-Chien Huang
Nanomaterials 2022, 12(11), 1852; https://doi.org/10.3390/nano12111852 - 28 May 2022
Cited by 5 | Viewed by 2610
Abstract
It is challenging to simultaneously consider device dimension, polarization extinction ratio (PER), insertion loss (IL), and operable bandwidth (BW) to design a polarization beam splitter (PBS) that is extensively used in photonic integrated circuits. The function of a PBS is to separate polarizations [...] Read more.
It is challenging to simultaneously consider device dimension, polarization extinction ratio (PER), insertion loss (IL), and operable bandwidth (BW) to design a polarization beam splitter (PBS) that is extensively used in photonic integrated circuits. The function of a PBS is to separate polarizations of light, doubling the transmission bandwidth in optical communication systems. In this work, we report a high-performance PBS comprising two-dimensional subwavelength grating metamaterials (2D SWGMs) between slot waveguides. The 2D SWGMs exhibited biaxial permittivity by tailoring the material anisotropy. The proposed PBS showed PERs of 26.8 and 26.4 dB for TE and TM modes, respectively, and ILs of ~0.25 dB for both modes, with an unprecedented small footprint of 1.35 μm × 2.75 μm working at the wavelength λ = 1550 nm. Moreover, the present structure attained satisfactory PERs of >20 dB and ILs of <0.5 dB within an ultrabroad BW of 200 nm. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

9 pages, 2521 KiB  
Article
Enhanced Reflection of GaAs Nanowire Laser Using Short-Period, Symmetric Double Metal Grating Reflectors
by Qun Yu, Wei Wei, Xin Yan and Xia Zhang
Nanomaterials 2022, 12(9), 1482; https://doi.org/10.3390/nano12091482 - 27 Apr 2022
Viewed by 1605
Abstract
Owing to the high contrast of the refractive indices at the end facets of a nanowire, lasing emission can be achieved in an individual nanowire without external, reflected feedback. However, the reflection provided by the end facet is not high enough to lower [...] Read more.
Owing to the high contrast of the refractive indices at the end facets of a nanowire, lasing emission can be achieved in an individual nanowire without external, reflected feedback. However, the reflection provided by the end facet is not high enough to lower the threshold gain, especially for nanowires with smaller diameters. This work proposes a novel structure of nanowire laser partially sandwiched in double Ag gratings. Compared to a nanowire with a single metal grating or without a grating, the parallel double metal gratings play the reflector role with higher reflectivity to enhance the round-trip feedback and reduce the threshold gain. The reflective properties are calculated using the finite elements method. Simulation results show that a high reflectivity of more than 90% can be achieved when the number of periods is more than 8. The reflectivity of double gratings is 2.4 times larger than that of the nanowire end facet for large nanowire diameters. When the nanowire has a small diameter of 150 nm, the reflectivity of double gratings is 17 times larger than that of the nanowire end facet. Compared to a single grating, the reflective performance of double gratings is much better. Owing to the highly reflective properties of the double gratings, nanowires partially sandwiched in the double gratings can realize lasing emission at a very low threshold gain, and the period of the grating can be very short to benefit on-chip interconnection systems. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

13 pages, 12777 KiB  
Article
Theoretical Study on Generation of Multidimensional Focused and Vector Vortex Beams via All-Dielectric Spin-Multiplexed Metasurface
by Yue Liu, Li Chen, Chengxin Zhou, Kuangling Guo, Xiaoyi Wang, Yuhan Hong, Xiangbo Yang, Zhongchao Wei and Hongzhan Liu
Nanomaterials 2022, 12(4), 580; https://doi.org/10.3390/nano12040580 - 9 Feb 2022
Cited by 12 | Viewed by 2775
Abstract
The optical vortex (OV) beams characterized by orbital angular momentum (OAM) possess ubiquitous applications in optical communication and nanoparticle manipulation. Particularly, the vortex vector beams are important in classical physics and quantum sciences. Here, based on an all-dielectric transmission metasurface platform, we demonstrate [...] Read more.
The optical vortex (OV) beams characterized by orbital angular momentum (OAM) possess ubiquitous applications in optical communication and nanoparticle manipulation. Particularly, the vortex vector beams are important in classical physics and quantum sciences. Here, based on an all-dielectric transmission metasurface platform, we demonstrate a spin-multiplexed metadevice combining propagation phase and Pancharatnam–Berry (PB) phase. By utilizing a phase-only modulation method, the metadevice can generate spin-dependent and multidimensional focused optical vortex (FOV) under the orthogonally circularly polarized incident light, and it can successfully realize the multiplexed of the above-mentioned FOVs for linearly polarized light. Meanwhile, the superposition of multiple OAM states can also produce vector vortex beams with different modes. Additionally, the evolution process of the electric field intensity profile is presented after the resultant vector vortex beams through a horizontal linear polarization. This work paves an innovative way for generating structured beams, and it provides promising opportunities for advanced applications in optical data storage, optical micromanipulation, and data communication. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

8 pages, 1638 KiB  
Article
Kramers–Kronig Relation for Attenuated Total Reflection from a Metal–Dielectric Interface Where Surface Plasmon Polaritons Are Excited
by Heongkyu Ju
Nanomaterials 2021, 11(11), 3063; https://doi.org/10.3390/nano11113063 - 14 Nov 2021
Cited by 5 | Viewed by 2607
Abstract
The applicability of the Kramers–Kronig relation for attenuated total reflection (ATR) from a metal–dielectric interface that can excite surface plasmon polaritons (SPP) is theoretically investigated. The plasmon-induced attenuation of reflected light can be taken as the resonant absorption of light through a virtual [...] Read more.
The applicability of the Kramers–Kronig relation for attenuated total reflection (ATR) from a metal–dielectric interface that can excite surface plasmon polaritons (SPP) is theoretically investigated. The plasmon-induced attenuation of reflected light can be taken as the resonant absorption of light through a virtual absorptive medium. The optical phase shift of light reflected from the SPP-generating interface is calculated using the KK relation, for which the spectral dependence of ATR is used at around the plasmonic resonance. The KK relation-calculated phase shift shows good agreement with that directly obtained from the reflection coefficient, calculated by a field transfer matrix formula at around the resonance. This indicates that physical causality also produces the spectral dependence of the phase of the leakage field radiated by surface plasmons that would interfere with the reflected part of light incident to the interface. This is analogous with optical dispersion in an absorptive medium where the phase of the secondary field induced by a medium polarization, which interferes with a polarization-stimulating incident field, has a spectral dependence that stems from physical causality. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

Back to TopTop