polymers-logo

Journal Browser

Journal Browser

Latent Space in Polymer Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Analysis and Characterization".

Deadline for manuscript submissions: closed (25 February 2023) | Viewed by 2503

Special Issue Editors


E-Mail Website
Guest Editor
Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
Interests: data intelligence; rheology; viscoelastic fluids; complex fluids; physics-based deep learning
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymeric materials play a key role in supporting the ever-increasing demand for electronics, medicines, plastics, sensors, and the transition to renewable energy sources. This is achieved through polymers’ distinct features at different structural and temporal scales (i.e., a subtle change in their atomic or mesoscopic structures leads to a totally emergent functionality). However, the design of new polymeric materials is still a lengthy process. This grand challenge is related to the lack of capability to comprehensively bridge phenomena that occur at temporal scales from tens of nanoseconds to seconds or spatial scales from nanometers to meters. Indeed, scientific datasets in this field are sparse and include only directly observable quantities, while the underlying processes are either too complex to observe directly or are completely unknown. To move towards an accelerated on-demand design for polymeric materials, novel approaches are needed to explore the latent space in scientific datasets and bridge the interactions of physics at different spatial and temporal scales. In pursuit of this objective, we designed this Special Issue to bring together researchers working on advanced computational and experimental methods and data science to exchange ideas, identify and address grand challenges, and possibly reveal latent multi-scale multi-temporal structures and mechanisms in polymer behaviors (rheology, self-assembly, phase transition, etc.) that can better serve the community to design polymeric materials in shorter time-frames—that is, accelerated on-demand material design.

Dr. Salah A. Faroughi
Dr. Célio Bruno Pinto Fernandes
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • rheology
  • self-assembly
  • phase transition
  • latent space
  • multi-scale modeling
  • multi-temporal experiments
  • data science
  • sparse data

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4697 KiB  
Article
The Rejuvenating Potential of Plasticizers on Oxidatively Aged Asphalts: Rheological and Molecular Dynamics Perspectives
by Wei Cao and Xinyan Li
Polymers 2022, 14(21), 4624; https://doi.org/10.3390/polym14214624 - 31 Oct 2022
Cited by 8 | Viewed by 2024
Abstract
Recycle and reuse of waste asphalt materials in the pavement industry has brought tremendous contributions to the infrastructure sustainability and environmental preservation. The recent literature has suggested a great potential of plasticizers to be used for rejuvenating the oxidated paving asphalts. This study [...] Read more.
Recycle and reuse of waste asphalt materials in the pavement industry has brought tremendous contributions to the infrastructure sustainability and environmental preservation. The recent literature has suggested a great potential of plasticizers to be used for rejuvenating the oxidated paving asphalts. This study was aimed at assessing the rejuvenating effectiveness by rheological characterizations of two typical plasticizers, dibutyl phthalate (DBP) and tributyl citrate (TBC), selected based on the molecular structural differences. The underlying rejuvenating mechanisms were approached using molecular dynamics (MD) simulation, for probing the interactions between the plasticizers and oxidized asphaltenes and examining the outcomes in terms of deagglomeration. The results indicated that both plasticizers were highly effective in restoring the stiffness and elasticity properties as well as fatigue resistance of the aged asphalt. According to the simulations, the two plasticizers were able to deagglomerate the asphaltene associations. Owing to the high polarity and hydroxyl group, TBC appeared to be slightly more efficient in dissociating the asphaltenes, which explained its higher effectiveness in restoring the rheological properties as compared to DBP. Both the rheology and simulation results suggested that the plasticizers were rejuvenating instead of simply softening the aged asphalt. Full article
(This article belongs to the Special Issue Latent Space in Polymer Materials)
Show Figures

Graphical abstract

Back to TopTop