polymers-logo

Journal Browser

Journal Browser

Current Trends and Perspectives in the Application of Polymeric Materials for Wastewater Treatment

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 43678

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

1. Department of Applied Chemistry and Physics, University of León, 24071 León, Spain
2. Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Interests: water pollution and contamination; water and wastewater treatment: global treatment systems; sustainable treatment processes; clean and alternative technologies; waste management and valorization; alternative adsorbent materials; alternative photocatalysts
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water is indispensable to the functioning of most known life-forms, and good water quality is essential to human health, social, and economic development, and ecosystem functioning. Nonetheless, population growth has being leading to the degradation and depletion of freshwater resources around the world. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow reducing water pollution is a major challenge.
The application of polymers and polymeric materials in wastewater treatment is a research field that has developed greatly. Conventional and novel approaches have been carried out by researchers from different areas, who have demonstrated that polymers and polymeric materials may have an important role in the removal of pollutants of different origin and nature from wastewater, in the disposal of sludge, in the recycling of materials, in the improved efficiency and economy of wastewater, etc.
In view of the relevant contributions that polymers and polymeric materials may make in the conservation of the aquatic environment, namely, by their application in wastewater treatment, this Special Issue aims at the publication of original research or review papers within this area. Scientific contributions on any aspect related the utilization of polymers and polymeric materials—either synthetic or natural—on the treatment or purification of wastewater are welcomed.
Given the large spectrum of materials, types of pollution and treatment processes, this is a widely inclusive Special Issue. Subject areas may include but are not limited to applications such as:

  • Coagulation–flocculation;
  • Membrane processes;
  • Ion exchange;
  • Adsorption;
  • New (nano)materials production, characterization or utilization;
  • Surface modification and/or functionalization;
  • Molecularly imprinted polymers;
  • Polymer catalysts for water treatment;
  • Polymeric blends, hybrids or (nano)composites;
  • Combined or integrated treatments;
  • Novel strategies for efficiency enhancement;
  • Sustainable wastewater treatment;
  • Management of sludge from wastewater treatment.

Prof. Dr. Marta Otero
Dr. Ricardo N. Coimbra
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wastewater treatment
  • organic contaminants
  • inorganic contaminants
  • pollutants removal
  • polymer applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

4 pages, 196 KiB  
Editorial
Current Trends and Perspectives in the Application of Polymeric Materials to Wastewater Treatment
by Ricardo N. Coimbra and Marta Otero
Polymers 2021, 13(7), 1089; https://doi.org/10.3390/polym13071089 - 30 Mar 2021
Cited by 3 | Viewed by 1928
Abstract
Water with the necessary quality is indispensable to the functioning of most of the known life forms, being essential to human health, social and economic development, and ecosystems functioning [...] Full article

Research

Jump to: Editorial

19 pages, 3881 KiB  
Article
Molecularly Imprinted Polymers for the Removal of Antide-Pressants from Contaminated Wastewater
by Tjasa Gornik, Sudhirkumar Shinde, Lea Lamovsek, Maja Koblar, Ester Heath, Börje Sellergren and Tina Kosjek
Polymers 2021, 13(1), 120; https://doi.org/10.3390/polym13010120 - 30 Dec 2020
Cited by 23 | Viewed by 4476
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants regularly detected in the environment. This indicates that the existing wastewater treatment techniques are not successfully removing them beforehand. This study investigated the potential of molecularly imprinted polymers (MIPs) to serve as sorbents [...] Read more.
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants regularly detected in the environment. This indicates that the existing wastewater treatment techniques are not successfully removing them beforehand. This study investigated the potential of molecularly imprinted polymers (MIPs) to serve as sorbents for removal of SSRIs in water treatment. Sertraline was chosen as the template for imprinting. We optimized the composition of MIPs in order to obtain materials with highest capacity, affinity, and selectivity for sertraline. We report the maximum capacity of MIP for sertraline in water at 72.6 mg g−1, and the maximum imprinting factor at 3.7. The MIPs were cross-reactive towards other SSRIs and the metabolite norsertraline. They showed a stable performance in wastewater-relevant pH range between 6 and 8, and were reusable after a short washing cycle. Despite having a smaller surface area between 27.4 and 193.8 m2·g−1, as compared to that of the activated carbon at 1400 m2·g−1, their sorption capabilities in wastewaters were generally superior. The MIPs with higher surface area and pore volume that formed more non-specific interactions with the targets considerably contributed to the overall removal efficiency, which made them better suited for use in wastewater treatment. Full article
Show Figures

Graphical abstract

12 pages, 1656 KiB  
Article
Chain Entanglement of 2-Ethylhexyl Hydrogen-2-Ethylhexylphosphonate into Methacrylate-Grafted Nonwoven Fabrics for Applications in Separation and Recovery of Dy (III) and Nd (III) from Aqueous Solution
by Hiroyuki Hoshina, Jinhua Chen, Haruyo Amada and Noriaki Seko
Polymers 2020, 12(11), 2656; https://doi.org/10.3390/polym12112656 - 11 Nov 2020
Cited by 12 | Viewed by 2156
Abstract
A nonwoven fabric adsorbent loaded with 2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) was developed for the separation and recovery of dysprosium (Dy) and neodymium (Nd) from an aqueous solution. The adsorbent was prepared by the radiation-induced graft polymerization of a methacrylate monomer with a long alkyl [...] Read more.
A nonwoven fabric adsorbent loaded with 2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) was developed for the separation and recovery of dysprosium (Dy) and neodymium (Nd) from an aqueous solution. The adsorbent was prepared by the radiation-induced graft polymerization of a methacrylate monomer with a long alkyl chain onto a nonwoven fabric and the subsequent loading of EHEP by hydrophobic interaction and chain entanglement between the alkyl chains. The adsorbent was evaluated by batch and column tests with a Dy (III) and Nd (III) aqueous solution. In the batch tests, the adsorbent showed high Dy (III) adsorptivity close to 25.0 mg/g but low Nd (III) adsorptivity below 1.0 mg/g, indicating that the adsorbent had high selective adsorption. In particular, the octadecyl methacrylate (OMA)-adsorbent showed adsorption stability in repeated tests. In the column tests, the OMA-adsorbent was also stable and showed high Dy (III) adsorptivity and high selectivity in repeated adsorption–elution circle tests. This result suggested that the OMA-adsorbent may be a promising adsorbent for the separation and recovery of Dy (III) and Nd (III) ions. Full article
Show Figures

Graphical abstract

15 pages, 8536 KiB  
Article
Kinetic Studies on the Catalytic Degradation of Rhodamine B by Hydrogen Peroxide: Effect of Surfactant Coated and Non-Coated Iron (III) Oxide Nanoparticles
by Mohd Shaban Ansari, Kashif Raees, Moonis Ali Khan, M.Z.A. Rafiquee and Marta Otero
Polymers 2020, 12(10), 2246; https://doi.org/10.3390/polym12102246 - 29 Sep 2020
Cited by 18 | Viewed by 4180
Abstract
Iron (III) oxide (Fe3O4) and sodium dodecyl sulfate (SDS) coated iron (III) oxide (SDS@Fe3O4) nanoparticles (NPs) were synthesized by the co-precipitation method for application in the catalytic degradation of Rhodamine B (RB) dye. The synthesized [...] Read more.
Iron (III) oxide (Fe3O4) and sodium dodecyl sulfate (SDS) coated iron (III) oxide (SDS@Fe3O4) nanoparticles (NPs) were synthesized by the co-precipitation method for application in the catalytic degradation of Rhodamine B (RB) dye. The synthesized NPs were characterized using X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infra-red (FT-IR) spectroscopy techniques and tested in the removal of RB. A kinetic study on RB degradation by hydrogen peroxide (H2O2) was carried out and the influence of Fe3O4 and SDS@Fe3O4 magnetic NPs on the degradation rate was assessed. The activity of magnetic NPs, viz. Fe3O4 and SDS@Fe3O4, in the degradation of RB was spectrophotometrically studied and found effective in the removal of RB dye from water. The rate of RB degradation was found linearly dependent upon H2O2 concentration and within 5.0 × 10−2 to 4.0 × 10−1 M H2O2, the observed pseudo-first-order kinetic rates (kobs, s−1) for the degradation of RB (10 mg L−1) at pH 3 and temperature 25 ± 2 °C were between 0.4 and 1.7 × 104 s−1, while in presence of 0.1% w/v Fe3O4 or SDS@Fe3O4 NPs, kobs were between 1.3 and 2.8 × 104 s−1 and between 2.6 and 4.8 × 104 s−1, respectively. Furthermore, in presence of Fe3O4 or SDS@Fe3O4, kobs increased with NPs dosage and showed a peaked pH behavior with a maximum at pH 3. The magnitude of thermodynamic parameters Ea and ΔH for RB degradation in presence of SDS@Fe3O4 were 15.63 kJ mol−1 and 13.01 kJ mol−1, respectively, lowest among the used catalysts, confirming its effectiveness during degradation. Furthermore, SDS in the presence of Fe3O4 NPs and H2O2 remarkably enhanced the rate of RB degradation. Full article
Show Figures

Graphical abstract

17 pages, 11545 KiB  
Article
Investigation of Biocidal Effect of Microfiltration Membranes Impregnated with Silver Nanoparticles by Sputtering Technique
by Aline M. F. Linhares, Cristiano P. Borges and Fabiana V. Fonseca
Polymers 2020, 12(8), 1686; https://doi.org/10.3390/polym12081686 - 29 Jul 2020
Cited by 9 | Viewed by 2600
Abstract
Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.% polyethersulfone and 7.5 wt.% [...] Read more.
Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.% polyethersulfone and 7.5 wt.% polyvinylpyrrolidone in N,N-dimethylacetamide) were prepared by phase inversion method, and silver nanoparticles were deposited on their surface by the physical technique of vapor deposition in a sputtering chamber. The membranes were characterized by Field Emission Scanning Electron Microscopy, and the presence of silver was investigated by Energy-Dispersive Spectroscopy and X-ray Diffraction. Experiments of silver leaching were carried out through immersion and filtration tests. After 10 months of immersion in water, the membranes still presented ~90% of the initial silver, which confirms the efficiency of the sputtering technique. Moreover, convective experiments indicated that 98.8% of silver remained in the membrane after 24 h of operation. Biocidal analyses (disc diffusion method and biofouling resistance) were performed against Pseudomonas aeruginosa and confirmed the antibacterial activity of these membranes with 0.6 and 0.7 log reduction of viable planktonic and sessile cells, respectively. These results indicate the great potential of these new membranes to reduce biofouling effects. Full article
Show Figures

Graphical abstract

21 pages, 3953 KiB  
Article
Core−Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water
by Liang Qiu, Guilaine Jaria, María Victoria Gil, Jundong Feng, Yaodong Dai, Valdemar I. Esteves, Marta Otero and Vânia Calisto
Polymers 2020, 12(6), 1385; https://doi.org/10.3390/polym12061385 - 20 Jun 2020
Cited by 28 | Viewed by 3448
Abstract
In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs [...] Read more.
In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs (magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption capacities of 77 and 24 mg g−1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals, namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively. This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of SMX from wastewater. Full article
Show Figures

Graphical abstract

18 pages, 4822 KiB  
Article
Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents
by Leili Mohammadi, Abbas Rahdar, Razieh Khaksefidi, Aliyeh Ghamkhari, Georgios Fytianos and George Z. Kyzas
Polymers 2020, 12(6), 1313; https://doi.org/10.3390/polym12061313 - 9 Jun 2020
Cited by 40 | Viewed by 3979
Abstract
There are different ways for antibiotics to enter the aquatic environment, with wastewater treatment plants (WWTP) considered to be one of the main points of entrance. Even treated wastewater effluent can contain antibiotics, since WWTP cannot eliminate the presence of antibiotics. Therefore, adsorption [...] Read more.
There are different ways for antibiotics to enter the aquatic environment, with wastewater treatment plants (WWTP) considered to be one of the main points of entrance. Even treated wastewater effluent can contain antibiotics, since WWTP cannot eliminate the presence of antibiotics. Therefore, adsorption can be a sustainable option, compared to other tertiary treatments. In this direction, a versatile synthesis of poly(styrene-block-acrylic acid) diblock copolymer/Fe3O4 magnetic nanocomposite (abbreviated as P(St-b-AAc)/Fe3O4)) was achieved for environmental applications, and particularly for the removal of antibiotic compounds. For this reason, the synthesis of the P(St-b-AAc) diblock copolymer was conducted with a reversible addition fragmentation transfer (RAFT) method. Monodisperse superparamagnetic nanocomposite with carboxylic acid groups of acrylic acid was adsorbed on the surface of Fe3O4 nanoparticles. The nanocomposites were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) analysis. Then, the nanoparticles were applied to remove ciprofloxacin (antibiotic drug compound) from aqueous solutions. The effects of various parameters, such as initial drug concentration, solution pH, adsorbent dosage, and contact time on the process were extensively studied. Operational parameters and their efficacy in the removal of Ciprofloxacin were studied. Kinetic and adsorption isothermal studies were also carried out. The maximum removal efficiency of ciprofloxacin (97.5%) was found at an initial concentration of 5 mg/L, pH 7, adsorbent’s dosage 2 mg/L, contact time equal to 37.5 min. The initial concentration of antibiotic and the dose of the adsorbent presented the highest impact on efficiency. The adsorption of ciprofloxacin was better fitted to Langmuir isotherm (R2 = 0.9995), while the kinetics were better fitted to second-order kinetic equation (R2 = 0.9973). Full article
Show Figures

Figure 1

25 pages, 3001 KiB  
Article
A Biodegradable Magnetic Nanocomposite as a Superabsorbent for the Simultaneous Removal of Selected Fluoroquinolones from Environmental Water Matrices: Isotherm, Kinetics, Thermodynamic Studies and Cost Analysis
by Geaneth Pertunia Mashile, Kgokgobi Mogolodi Dimpe and Philiswa Nosizo Nomngongo
Polymers 2020, 12(5), 1102; https://doi.org/10.3390/polym12051102 - 12 May 2020
Cited by 31 | Viewed by 3386
Abstract
The application of a magnetic mesoporous carbon/β-cyclodextrin–chitosan (MMPC/Cyc-Chit) nanocomposite for the adsorptive removal of danofloxacin (DANO), enrofloxacin (ENRO) and levofloxacin (LEVO) from aqueous and environmental samples is reported in this study. The morphology and surface characteristics of the magnetic nanocomposite were investigated by [...] Read more.
The application of a magnetic mesoporous carbon/β-cyclodextrin–chitosan (MMPC/Cyc-Chit) nanocomposite for the adsorptive removal of danofloxacin (DANO), enrofloxacin (ENRO) and levofloxacin (LEVO) from aqueous and environmental samples is reported in this study. The morphology and surface characteristics of the magnetic nanocomposite were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption–desorption and Fourier transform infrared spectroscopy (FTIR). The N2 adsorption–desorption results revealed that the prepared nanocomposite was mesoporous and the BET surface area was 1435 m2 g−1. The equilibrium data for adsorption isotherms were analyzed using two and three isotherm parameters. Based on the correlation coefficients (R2), the Langmuir and Sips isotherm described the data better than others. The maximum monolayer adsorption capacities of MMPC/Cyc-Chit nanocomposite for DANO, ENRO and LEVO were 130, 195 and 165 mg g−1, respectively. Adsorption thermodynamic studies performed proved that the adsorption process was endothermic and was dominated by chemisorption. Full article
Show Figures

Graphical abstract

21 pages, 4201 KiB  
Article
Permeability and Antifouling Augmentation of a Hybrid PVDF-PEG Membrane Using Nano-Magnesium Oxide as a Powerful Mediator for POME Decolorization
by Mohammed Abdulsalam, Hasfalina Che Man, Pei Sean Goh, Khairul Faezah Yunos, Zurina Zainal Abidin, Aida Isma M.I. and Ahmad Fauzi Ismail
Polymers 2020, 12(3), 549; https://doi.org/10.3390/polym12030549 - 3 Mar 2020
Cited by 16 | Viewed by 3990
Abstract
This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and [...] Read more.
This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and 1.25 g) were spun through phase inversion technique. The resultants Nano-hybrid fibers were characterized and compared based on SEM, EDX, contact angle, surface zeta-potential, permeability flux, fouling resistance and color rejection from palm oil mill effluent (POME). Noticeably, the permeability flux, fouling resistance and color rejection improved with the increase in NMO loading. PVDF-PEG with 0.50 g-NMO loading displayed an outstanding performance with 198.35 L/m2·h, 61.33 L/m2·h and 74.65% of water flux, POME flux and color rejection from POME, respectively. More so, a remarkable fouling resistance were obtained such that the flux recovery, reversible fouling percentage and irreversible fouling percentage remains relatively steady at 90.98%, 61.39% and 7.68%, respectively, even after 3 cycles of continuous filtrations for a total period of 9 h. However, at excess loading of 0.75 and 1.25 g-NMO, deterioration in the flux and fouling resistance was observed. This was due to the agglomeration of nanoparticles within the matrix structure at the excessive loading. Full article
Show Figures

Graphical abstract

12 pages, 1377 KiB  
Article
Removal of Rhodamine B from Water Using a Solvent Impregnated Polymeric Dowex 5WX8 Resin: Statistical Optimization and Batch Adsorption Studies
by Moonis Ali Khan, Momina, Masoom Raza Siddiqui, Marta Otero, Shareefa Ahmed Alshareef and Mohd Rafatullah
Polymers 2020, 12(2), 500; https://doi.org/10.3390/polym12020500 - 24 Feb 2020
Cited by 60 | Viewed by 4354
Abstract
Herein, commercially available Dowex 5WX8, a cation exchange polymeric resin, was modified through solvent impregnation with t-butyl phosphate (TBP) to produce a solvent impregnated resin (SIR), which was tested for the removal of rhodamine B (RhB) from water in batch adsorption experiments. The [...] Read more.
Herein, commercially available Dowex 5WX8, a cation exchange polymeric resin, was modified through solvent impregnation with t-butyl phosphate (TBP) to produce a solvent impregnated resin (SIR), which was tested for the removal of rhodamine B (RhB) from water in batch adsorption experiments. The effect of SIR dosage, contact time, and pH on RhB adsorption was studied and optimized by response surface methodology (RSM), interaction, Pareto, and surface plots. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were respectively used for characterizing SIR surface morphology and identifying active binding sites before and after RhB adsorption. SEM showed that the pristine SIR surface was covered with irregular size and shape spots with some pores, while RhB saturated SIR surface was non-porous. FTIR revealed the involvement of electrostatic and π–π interactions during RhB adsorption on SIR. Dosage of SIR, contact time, and their interaction significantly affected RhB adsorption on SIR, while pH and its interaction with dosage and contact time did not. The optimum identified experimental conditions were 0.16 g of SIR dose and 27.66 min of contact time, which allowed for 98.45% color removal. Moreover, RhB adsorption equilibrium results fitted the Langmuir isotherm with a maximum monolayer capacity (qmax) of 43.47 mg/g. Full article
Show Figures

Graphical abstract

16 pages, 10548 KiB  
Article
Activated Carbon Microsphere from Sodium Lignosulfonate for Cr(VI) Adsorption Evaluation in Wastewater Treatment
by Keyan Yang, Jingchen Xing, Pingping Xu, Jianmin Chang, Qingfa Zhang and Khan Muhammad Usman
Polymers 2020, 12(1), 236; https://doi.org/10.3390/polym12010236 - 19 Jan 2020
Cited by 25 | Viewed by 4735
Abstract
In this study, activated carbon microsphere (SLACM) was prepared from powdered sodium lignosulfonate (SL) and polystyrene by the Mannich reaction and ZnCl2 activation, which can be used to remove Cr(VI) from the aqueous solution without adding any binder. The SLACM was characterized [...] Read more.
In this study, activated carbon microsphere (SLACM) was prepared from powdered sodium lignosulfonate (SL) and polystyrene by the Mannich reaction and ZnCl2 activation, which can be used to remove Cr(VI) from the aqueous solution without adding any binder. The SLACM was characterized and the batch experiments were conducted under different initial pH values, initial concentrations, contact time durations and temperatures to investigate the adsorption performance of Cr(VI) onto SLACM. The results indicated that the SLACM surface area and average pore size were 769.37 m2/g and 2.46 nm (the mesoporous material), respectively. It was found that the reduced initial pH value, the increased temperature and initial Cr(VI) concentration were beneficial to Cr(VI) adsorption. The maximum adsorption capacity of Cr(VI) on SLACM was 227.7 mg/g at an initial pH value of 2 and the temperature of 40 °C. The adsorption of SLACM for Cr(VI) mainly occurred during the initial stages of the adsorption process. The adsorption kinetic and isotherm experimental data were thoroughly described by Elovich and Langmuir models, respectively. SL could be considered as a potential raw material for the production of activated carbon, which had a considerable potential for the Cr(VI) removal from wastewater. Full article
Show Figures

Graphical abstract

14 pages, 6435 KiB  
Article
Dopamine Grafted Iron-Loaded Waste Silk for Fenton-Like Removal of Toxic Water Pollutants
by Md Shipan Mia, Biaobiao Yan, Xiaowei Zhu, Tieling Xing and Guoqiang Chen
Polymers 2019, 11(12), 2037; https://doi.org/10.3390/polym11122037 - 9 Dec 2019
Cited by 21 | Viewed by 3370
Abstract
Dispersion of iron was achieved on waste silk fibers (wSF) after grafting of polydopamine (PDA). The catalytic activity of the resulting material (wSF-DA/Fe) was investigated in Fenton-like removal of toxic aromatic dyes (Methylene Blue, Cationic Violet X-5BLN, and Reactive Orange GRN) water. The [...] Read more.
Dispersion of iron was achieved on waste silk fibers (wSF) after grafting of polydopamine (PDA). The catalytic activity of the resulting material (wSF-DA/Fe) was investigated in Fenton-like removal of toxic aromatic dyes (Methylene Blue, Cationic Violet X-5BLN, and Reactive Orange GRN) water. The dye removal yield reached 98%, 99%, and 98% in 10–40 min for Methylene Blue, Cationic Violet X-5BLN, and Reactive Orange GRN, respectively. The catalytic activity was explained in terms of the effects of temperature, dyes, and electrolytes. In addition, the kinetic study showed that the removal of dyes followed pseudo-1st order adsorption kinetics. These findings allow envisaging the preparation of fiber-based catalysts for potential uses in environmental and green chemistry. Full article
Show Figures

Graphical abstract

Back to TopTop