Organic Solar Cells

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (15 August 2014) | Viewed by 88661

Special Issue Editors

Northwestern University, 2220 Campus Drive, Cook Hall 2036, Office - Cook 2011, Evanston, IL 60208, USA
Interests: nanostructure materialslight interaction with materials
Materials Research Institute McCormick School of Engineering, Northwestern University, 2137 Sheridan Road, Catalysis Center 125, Evanston, IL 60208, USA

Special Issue Information

Dear Colleagues,

Organic solar cells are an important family of third generation photovoltaic technology and have stimulated extensive interest in the solar cell research community. Organic solar cells typically contain a mixture of an electron donor and an electron acceptor; either one or both of them are organic semiconductors (molecular or polymeric materials). These solar cells are light-weight, inexpensive, and compatible with large-scale roll-to-roll fabrication. Fueled by multidisciplinary research efforts, the past five years have seen a rapid advancement in their performance.

This Special Issue on “Organic Solar Cells” will discuss state-of-the-art topics concerning organic solar cells (e.g., the design and synthesis of organic semiconductors, material characterization, device photophysics and characterization, the design and fabrication of novel device architectures, etc.). The Special Issue will be of great interest to the organic solar cell research community. Your contribution to the issue will be greatly appreciated.

Prof. Dr. Robert P. H. Chang
Dr. Nanjia Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

4622 KiB  
Article
Optical Characterization of the Hole Polaron in a Series of Diketopyrrolopyrrole Polymers Used for Organic Photovoltaics
by Evan L. Williams, Ter Shien Ang, Zien Ooi, Prashant Sonar, Ting Ting Lin, Wei Teng Neo, Jing Song and Jonathan Hobley
Polymers 2015, 7(1), 69-90; https://doi.org/10.3390/polym7010069 - 31 Dec 2014
Cited by 8 | Viewed by 9119
Abstract
A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of [...] Read more.
A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Full article
(This article belongs to the Special Issue Organic Solar Cells)
Show Figures

Graphical abstract

Review

Jump to: Research

5003 KiB  
Review
Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells
by Hao Zeng, Xucheng Zhu, Yongye Liang and Xugang Guo
Polymers 2015, 7(2), 333-372; https://doi.org/10.3390/polym7020333 - 17 Feb 2015
Cited by 81 | Viewed by 18332
Abstract
Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great [...] Read more.
Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed. Full article
(This article belongs to the Special Issue Organic Solar Cells)
Show Figures

Graphical abstract

2465 KiB  
Review
Solar Paint: From Synthesis to Printing
by Xiaojing Zhou, Warwick Belcher and Paul Dastoor
Polymers 2014, 6(11), 2832-2844; https://doi.org/10.3390/polym6112832 - 13 Nov 2014
Cited by 15 | Viewed by 12154
Abstract
Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents [...] Read more.
Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. In this paper, we review progress in the field of nanoparticulate organic photovoltaic (NPOPV) devices and future prospects for large-scale manufacturing of solar cells based on this technology. Full article
(This article belongs to the Special Issue Organic Solar Cells)
Show Figures

Graphical abstract

8354 KiB  
Review
Morphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells
by Hsueh-Chung Liao, Po-Hsuen Chen, Robert P. H. Chang and Wei-Fang Su
Polymers 2014, 6(11), 2784-2802; https://doi.org/10.3390/polym6112784 - 03 Nov 2014
Cited by 27 | Viewed by 10113
Abstract
Bulk heterojunction (BHJ) organic photovoltaic (OPV) promise low cost solar energy and have caused an explosive increase in investigations during the last decade. Control over the 3D morphology of BHJ blend films in various length scales is one of the pillars accounting for [...] Read more.
Bulk heterojunction (BHJ) organic photovoltaic (OPV) promise low cost solar energy and have caused an explosive increase in investigations during the last decade. Control over the 3D morphology of BHJ blend films in various length scales is one of the pillars accounting for the significant advance of OPV performance recently. In this contribution, we focus on the strategy of incorporating an additive into BHJ blend films as a morphological control agent, i.e., ternary blend system. This strategy has shown to be effective in tailoring the morphology of BHJ through different inter- and intra-molecular interactions. We systematically review the morphological observations and associated mechanisms with respect to various kinds of additives, i.e., polymers, small molecules and inorganic nanoparticles. We organize the effects of morphological control (compatibilization, stabilization, etc.) and provide general guidelines for rational molecular design for additives toward high efficiency and high stability organic solar cells. Full article
(This article belongs to the Special Issue Organic Solar Cells)
Show Figures

Graphical abstract

1150 KiB  
Review
Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells
by Prabakaran Kumaresan, Sureshraju Vegiraju, Yamuna Ezhumalai, Shueh Lin Yau, Choongik Kim, Wen-Hsi Lee and Ming-Chou Chen
Polymers 2014, 6(10), 2645-2669; https://doi.org/10.3390/polym6102645 - 22 Oct 2014
Cited by 88 | Viewed by 17521
Abstract
Organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs) have drawn great interest from both academics and industry, due to the possibility of low-cost conversion of photovoltaic energy at reasonable efficiencies. This review focuses on recent progress in molecular engineering and technological aspects of [...] Read more.
Organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs) have drawn great interest from both academics and industry, due to the possibility of low-cost conversion of photovoltaic energy at reasonable efficiencies. This review focuses on recent progress in molecular engineering and technological aspects of fused-thiophene-based organic dye molecules for applications in solar cells. Particular attention has been paid to the design principles and stability of these dye molecules, as well as on the effects of various electrolyte systems for DSSCs. Importantly, it has been found that incorporation of a fused-thiophene unit into the sensitizer has several advantages, such as red-shift of the intramolecular charge transfer band, tuning of the frontier molecular energy level, and improvements in both photovoltaic performance and stability. This work also examines the correlation between the physical properties and placement of fused-thiophene in the molecular structure with regard to their performance in OPVs and DSSCs. Full article
(This article belongs to the Special Issue Organic Solar Cells)
Show Figures

Graphical abstract

5624 KiB  
Review
Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics
by Junsheng Yu, Yifan Zheng and Jiang Huang
Polymers 2014, 6(9), 2473-2509; https://doi.org/10.3390/polym6092473 - 25 Sep 2014
Cited by 156 | Viewed by 19648
Abstract
Organic photovoltaic cells (OPVs) have been a hot topic for research during the last decade due to their promising application in relieving energy pressure and environmental problems caused by the increasing combustion of fossil fuels. Much effort has been made toward understanding the [...] Read more.
Organic photovoltaic cells (OPVs) have been a hot topic for research during the last decade due to their promising application in relieving energy pressure and environmental problems caused by the increasing combustion of fossil fuels. Much effort has been made toward understanding the photovoltaic mechanism, including evolving chemical structural motifs and designing device structures, leading to a remarkable enhancement of the power conversion efficiency of OPVs from 3% to over 15%. In this brief review, the advanced progress and the state-of-the-art performance of OPVs in very recent years are summarized. Based on several of the latest developed approaches to accurately detect the separation of electron-hole pairs in the femtosecond regime, the theoretical interpretation to exploit the comprehensive mechanistic picture of energy harvesting and charge carrier generation are discussed, especially for OPVs with bulk and multiple heterojunctions. Subsequently, the novel structural designs of the device architecture of OPVs embracing external geometry modification and intrinsic structure decoration are presented. Additionally, some approaches to further increase the efficiency of OPVs are described, including thermotics and dynamics modification methods. Finally, this review highlights the challenges and prospects with the aim of providing a better understanding towards highly efficient OPVs. Full article
(This article belongs to the Special Issue Organic Solar Cells)
Show Figures

Graphical abstract

Back to TopTop