sensors-logo

Journal Browser

Journal Browser

Techniques and Instrumentation for Microwave Sensing

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 2164

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Electronics, Microelectronics and Nanotechnology, University of Lille, Villeneuve-d'Ascq, France
Interests: RF nanotechnology; microwave/MM-wave radar; sensing techniques and systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sensors detect real-world quantities, which are then converted into an electrical signal. Innovative sensor technologies are used in leading industries and daily life. In the recent years, techniques and related instruments have been focused on addressing scientific challenges with high societal impact.

Microwave (300MHz-30GHz) and mm-Wave (30GHz-300GHz) electromagnetic waves present advantages such as penetration inside materials, low power, high electrical sensitivity, non-contact and non-ionizing characterization. Despite these advantages over established methods, their penetration is still limited and confined to niche markets or academic laboratories. The inadequate commercial availability of microwave systems for NDT purposes has limited its more extensive implementation. Indeed, quantitative evaluation of materials requires dedicated calibration algorithms, protocols, standard reference materials, and essential training in GHz technologies not available at the industry level. In this effort, last developments in terms of methods and instruments at different scales of dimensions are welcome.

Dr. Kamel Haddadi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microwave and mm-wave sensing
  • microwave monitoring
  • microwave passive sensing devices
  • microwave active sensing devices
  • microwave sensing applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 701 KiB  
Article
Development of a Dynamically Re-Configurable Radio-Frequency Interference Detection System for L-Band Microwave Radiometers
by Adrian Perez-Portero, Jorge Querol, Andreu Mas-Vinolas, Adria Amezaga, Roger Jove-Casulleras and Adriano Camps
Sensors 2024, 24(13), 4034; https://doi.org/10.3390/s24134034 - 21 Jun 2024
Viewed by 432
Abstract
Real-Time RFI Detection and Flagging (RT-RDF) for microwave radiometers is a versatile new FPGA algorithm designed to detect and flag Radio-Frequency Interference (RFI) in microwave radiometers. This block utilizes computationally-efficient techniques to identify and analyze RF signals, allowing the system to take appropriate [...] Read more.
Real-Time RFI Detection and Flagging (RT-RDF) for microwave radiometers is a versatile new FPGA algorithm designed to detect and flag Radio-Frequency Interference (RFI) in microwave radiometers. This block utilizes computationally-efficient techniques to identify and analyze RF signals, allowing the system to take appropriate measures to mitigate interference and maintain reliable performance. With L-Band microwave radiometry as the main application, this RFI detection algorithm focuses on the Kurtogram and Spectrogram to detect non-Gaussian behavior. To gain further modularity, an FFT-based filter bank is used to divide the receiver’s bandwidth into several sub-bands within the band of interest of the instrument, depending on the application. Multiple blanking strategies can then be applied in each band using the provided detection flags. The algorithm can be re-configured in the field, for example with dynamic integration times to support operation in different environments, or configurable thresholds to account for variable RFI environments. A validation and testing campaign has been performed on multiple scenarios with the ARIEL commercial microwave radiometer, and the results confirm the excellent performance of the system. Full article
(This article belongs to the Special Issue Techniques and Instrumentation for Microwave Sensing)
Show Figures

Figure 1

26 pages, 2720 KiB  
Article
Device-Free Wireless Sensing for Gesture Recognition Based on Complementary CSI Amplitude and Phase
by Zhijia Cai, Zehao Li, Zikai Chen, Hongyang Zhuo, Lei Zheng, Xianda Wu and Yong Liu
Sensors 2024, 24(11), 3414; https://doi.org/10.3390/s24113414 - 25 May 2024
Viewed by 582
Abstract
By integrating sensing capability into wireless communication, wireless sensing technology has become a promising contactless and non-line-of-sight sensing paradigm to explore the dynamic characteristics of channel state information (CSI) for recognizing human behaviors. In this paper, we develop an effective device-free human gesture [...] Read more.
By integrating sensing capability into wireless communication, wireless sensing technology has become a promising contactless and non-line-of-sight sensing paradigm to explore the dynamic characteristics of channel state information (CSI) for recognizing human behaviors. In this paper, we develop an effective device-free human gesture recognition (HGR) system based on WiFi wireless sensing technology in which the complementary CSI amplitude and phase of communication link are jointly exploited. To improve the quality of collected CSI, a linear transform-based data processing method is first used to eliminate the phase offset and noise and to reduce the impact of multi-path effects. Then, six different time and frequency domain features are chosen for both amplitude and phase, including the mean, variance, root mean square, interquartile range, energy entropy and power spectral entropy, and a feature selection algorithm to remove irrelevant and redundant features is proposed based on filtering and principal component analysis methods, resulting in the construction of a feature subspace to distinguish different gestures. On this basis, a support vector machine-based stacking algorithm is proposed for gesture classification based on the selected and complementary amplitude and phase features. Lastly, we conduct experiments under a practical scenario with one transmitter and receiver. The results demonstrate that the average accuracy of the proposed HGR system is 98.3% and that the F1-score is over 97%. Full article
(This article belongs to the Special Issue Techniques and Instrumentation for Microwave Sensing)
Show Figures

Figure 1

9 pages, 2978 KiB  
Communication
Development of a Microwave Sensor for Real-Time Monitoring of a Micro Direct Methanol Fuel Cell
by Shubin Zhang, Tian Qiang and Yanfeng Jiang
Sensors 2024, 24(3), 969; https://doi.org/10.3390/s24030969 - 2 Feb 2024
Viewed by 776
Abstract
Micro direct methanol fuel cells (μDMFCs) are a promising power source for microelectronic devices and systems. As the operating state and performance of a μDMFC is generally determined by both electrochemical polarization and methanol crossover, it is important to monitor the methanol concentration [...] Read more.
Micro direct methanol fuel cells (μDMFCs) are a promising power source for microelectronic devices and systems. As the operating state and performance of a μDMFC is generally determined by both electrochemical polarization and methanol crossover, it is important to monitor the methanol concentration in μDMFCs. Here, we design and fabricate a microwave sensor and integrate it with a μDMFC for the online detection of methanol concentration in a nonintrusive way. The sensing area is set at the bottom of the anode chamber of a μDMFC which exhibits a maximum output power density of 28.8 mW cm−2 at 30 °C. With a square ring structure, the dual-mode microwave sensor shows a sensitivity of 9.5 MHz mol−1 L. Furthermore, the importance of methanol concentration monitoring is demonstrated in the long term. A relatively smooth methanol decline curve was obtained, which indicated a normal and stable operating status of the μDMFC. Derived from real-time recording data, fuel utilization was additionally calculated as 28.5%. Full article
(This article belongs to the Special Issue Techniques and Instrumentation for Microwave Sensing)
Show Figures

Figure 1

Back to TopTop