The Ring Tetralogy: What Did We Learn from the LHC and How We Will Use It

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Physics".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 2122

Special Issue Editor


E-Mail Website
Guest Editor
Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, Udine, Italy
Interests: high energy physics; accelerator physics; experimental physics; standard model; LHC; top quark physics; FCC (future circular collider); calorimetry

Special Issue Information

Dear Colleagues,

The Large Hadron Collider (LHC) and the ATLAS and CMS detectors have shown exceptional performance over the last 10 years. In the first run, the Higgs boson was discovered; subsequently, data collected in the second run have been used to put the whole Standard Model theory under the microscope. This proposed Special Issue is aiming to collect review articles covering what has been learned from the second run’s results, and how this will guide us through the next steps in the HEP research field, looking at four different physics sectors, namely: (1) EW physics, (2) QCD physics (3) Higgs physics, and (4) beyond the Standard Model physics.

Prof. Dr. Marina Cobal
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • HEP
  • LHC
  • ATLAS experiment
  • CMS experiment
  • Higgs
  • Standard model
  • EW
  • QCD
  • SUSY
  • EXOTICS

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 7107 KiB  
Article
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
by D. Abbaneo, S. Ahmad, R. Albanese, A. Alexandrov, F. Alicante, K. Androsov, A. Anokhina, T. Asada, C. Asawatangtrakuldee, M. A. Ayala Torres, C. Battilana, A. Bay, A. Bertocco, C. Betancourt, D. Bick, R. Biswas, A. Blanco Castro, V. Boccia, M. Bogomilov, D. Bonacorsi, W. M. Bonivento, P. Bordalo, A. Boyarsky, S. Buontempo, M. Campanelli, T. Camporesi, V. Canale, A. Castro, D. Centanni, F. Cerutti, M. Chernyavskiy, K.-Y. Choi, S. Cholak, F. Cindolo, M. Climescu, A. P. Conaboy, G. M. Dallavalle, D. Davino, P. T. de Bryas, G. De Lellis, M. De Magistris, A. De Roeck, A. De Rújula, M. De Serio, D. De Simone, A. Di Crescenzo, D. Di Ferdinando, R. Donà, O. Durhan, F. Fabbri, F. Fedotovs, M. Ferrillo, M. Ferro-Luzzi, R. A. Fini, A. Fiorillo, R. Fresa, W. Funk, F. M. Garay Walls, A. Golovatiuk, A. Golutvin, E. Graverini, A. M. Guler, V. Guliaeva, G. J. Haefeli, C. Hagner, J. C. Helo Herrera, E. van Herwijnen, P. Iengo, S. Ilieva, A. Infantino, A. Iuliano, R. Jacobsson, C. Kamiscioglu, A. M. Kauniskangas, E. Khalikov, S. H. Kim, Y. G. Kim, G. Klioutchnikov, M. Komatsu, N. Konovalova, S. Kuleshov, L. Krzempek, H. M. Lacker, O. Lantwin, F. Lasagni Manghi, A. Lauria, K. Y. Lee, K. S. Lee, S. Lo Meo, V. P. Loschiavo, S. Marcellini, A. Margiotta, A. Mascellani, F. Mei, A. Miano, A. Mikulenko, M. C. Montesi, F. L. Navarria, W. Nuntiyakul, S. Ogawa, N. Okateva, M. Ovchynnikov, G. Paggi, B. D. Park, A. Pastore, A. Perrotta, D. Podgrudkov, N. Polukhina, A. Prota, A. Quercia, S. Ramos, A. Reghunath, T. Roganova, F. Ronchetti, T. Rovelli, O. Ruchayskiy, T. Ruf, M. Sabate Gilarte, Z. Sadykov, M. Samoilov, V. Scalera, W. Schmidt-Parzefall, O. Schneider, G. Sekhniaidze, N. Serra, M. Shaposhnikov, V. Shevchenko, T. Shchedrina, L. Shchutska, H. Shibuya, S. Simone, G. P. Siroli, G. Sirri, G. Soares, J. Y. Sohn, O. J. Soto Sandoval, M. Spurio, N. Starkov, J. Steggemann, I. Timiryasov, V. Tioukov, F. Tramontano, C. Trippl, E. Ursov, A. Ustyuzhanin, G. Vankova-Kirilova, G. Vasquez, V. Verguilov, N. Viegas Guerreiro Leonardo, C. Vilela, C. Visone, R. Wanke, E. Yaman, Z. Yang, C. Yazici, C. S. Yoon, E. Zaffaroni, J. Zamora Saa and the SND@LHC Collaborationadd Show full author list remove Hide full author list
Symmetry 2024, 16(6), 702; https://doi.org/10.3390/sym16060702 - 6 Jun 2024
Viewed by 1368
Abstract
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux [...] Read more.
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux entering the acceptance was also measured. To improve the rejection power of the detector and to increase the fiducial volume, a third Veto plane was recently installed. The energy resolution of the calorimeter system was measured in a test beam. This will help with the identification of νe interactions that can be used to probe charm production in the pseudo-rapidity range of SND@LHC (7.2 < η < 8.4). Events with three outgoing muons have been observed and are being studied. With no vertex in the target, these events are very likely from muon trident production in the rock before the detector. Events with a vertex in the detector could be from trident production, photon conversion, or positron annihilation. To enhance SND@LHC’s physics case, an upgrade is planned for HL-LHC that will increase the statistics and reduce the systematics. The installation of a magnet will allow the separation of νμ from ν¯μ Full article
Show Figures

Figure 1

Back to TopTop