Non-Primate Lentiviruses 2021

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: closed (23 December 2021) | Viewed by 24546

Special Issue Editors


E-Mail Website
Guest Editor
Director, Immunopathology Core Laboratory, Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA
Interests: immunopathology; infectious disease; Cytauxzoon felis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Co-Guest Editor
School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino MC, Italy
Interests: infectious diseases of animals; small ruminants; zoonosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Non-primate lentiviruses are important pathogens of wild and domestic animals that play a significant role in translational research. Species-specific infection with these agents causes lifelong disease and immune dysfunction in native hosts, and our understanding of viral infection kinetics, immunopathogenesis, viral fitness, and evolution during natural infection has significantly advanced our understanding of other lentiviral diseases such as HIV-AIDS. Non-primate lentiviruses are also notable in their inability to infect and induce disease in humans, highlighting unique opportunities for adaptation as vectors in gene therapy applications. This Special Issue of Viruses will highlight recent advancements in this diverse field and explore comparative applications of non-primate lentiviruses to promote understanding of these underutilized agents and outline prospects for furthering studies with translational potential.

Dr. Craig Miller
Guest Editor
Prof. Dr. Silvia Preziuso
Co-Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • FIV 
  • EIAV 
  • FeLV 
  • BIV 
  • CAEV 
  • Maedi-Visna 
  • vector 
  • pathogenesis 
  • non-primate 
  • lentivirus

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 9716 KiB  
Article
Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
by Monika Olech and Jacek Kuźmak
Viruses 2021, 13(12), 2529; https://doi.org/10.3390/v13122529 - 16 Dec 2021
Cited by 10 | Viewed by 2486
Abstract
Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study [...] Read more.
Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
Show Figures

Figure 1

13 pages, 3859 KiB  
Article
Quasispecies Composition of Small Ruminant Lentiviruses Found in Blood Leukocytes and Milk Epithelial Cells
by Monika Olech, Arkadiusz Bomba and Jacek Kuźmak
Viruses 2021, 13(12), 2497; https://doi.org/10.3390/v13122497 - 13 Dec 2021
Cited by 2 | Viewed by 2291
Abstract
Small ruminant lentiviruses (SRLVs) exist as populations of closely related genetic variants, known as quasispecies, within an individual host. The privileged way of SRLVs transmission in goats is through the ingestion of colostrum and milk of infected does. Thus, characterization of SRLV variants [...] Read more.
Small ruminant lentiviruses (SRLVs) exist as populations of closely related genetic variants, known as quasispecies, within an individual host. The privileged way of SRLVs transmission in goats is through the ingestion of colostrum and milk of infected does. Thus, characterization of SRLV variants transmitted through the milk, including milk epithelial cells (MEC), may provide useful information about the transmission and evolution of SRLVs. Therefore, the aim of this study was to detect SRLVs in peripheral blood leukocytes (PBLs) and milk epithelial cells of goats naturally infected with SRLVs and perform single nucleotide variations analysis to characterize the extent of genetic heterogeneity of detected SRLVs through comparison of their gag gene sequences. Blood and milk samples from 24 seropositive goats were tested in this study. The double immunolabeling against p28 and cytokeratin demonstrated that milk epithelial cells originated from naturally infected goats were infected by SRLVs. Moreover, PCR confirmed the presence of the integrated SRLVs proviral genome indicating that MECs may have a role as a reservoir of SRLVs and can transmit the virus through milk. The blood and MEC derived sequences from 7 goats were successfully sequenced using NGS and revealed that these sequences were genetically similar. The MEC and blood-derived sequences contained from 3 to 30 (mean, 10.8) and from 1 to 10 (mean, 5.4) unique SNVs, respectively. In five out of seven goats, SNVs occurred more frequent in MEC derived sequences. Non-synonymous SNVs were found in both, PBLs and MEC-derived sequences of analyzed goats and their total number differed between animals. The results of this study add to our understanding of SRLVs genomic variability. Our data provides evidence for the existence of SRLVs quasispecies and to our knowledge, this is the first study that showed quasispecies composition and minority variants of SRLVs present milk epithelial cells. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
Show Figures

Figure 1

12 pages, 296 KiB  
Article
First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection
by Chiara Arcangeli, Daniele Lucarelli, Martina Torricelli, Carla Sebastiani, Marcella Ciullo, Claudia Pellegrini, Andrea Felici, Silva Costarelli, Monica Giammarioli, Francesco Feliziani, Fabrizio Passamonti and Massimo Biagetti
Viruses 2021, 13(7), 1290; https://doi.org/10.3390/v13071290 - 1 Jul 2021
Cited by 11 | Viewed by 2718
Abstract
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV), referred to as small ruminant lentiviruses (SRLVs), belong to the genus Lentivirus of the Retroviridae family. SRLVs infect both sheep and goats, causing significant economic losses and animal welfare damage. Recent findings suggest an [...] Read more.
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV), referred to as small ruminant lentiviruses (SRLVs), belong to the genus Lentivirus of the Retroviridae family. SRLVs infect both sheep and goats, causing significant economic losses and animal welfare damage. Recent findings suggest an association between serological status and allelic variants of different genes such as TMEM154, TLR9, MYD88 and CCR5. The aim of this work was to investigate the role of specific polymorphisms of these genes in SRLVs infection in some sheep flocks in Italy. In addition to those already known, novel variants in the TMEM154 (P7H, I74V, I105V) gene were detected in this study. The risk of infection was determined finding an association between the serological status and polymorphisms P7H, E35K, N70I, I74V, I105V of TMEM154, R447Q, A462S and G520R in TLR9 gene, H176H* and K190K* in MYD88 genes, while no statistical association was observed for the 4-bp deletion of the CCR5 gene. Since no vaccines or treatments have been developed, a genetically based approach could be an innovative strategy to prevent and to control SRLVs infection. Our findings are an important starting point in order to define the genetic resistance profile towards SRLVs infection. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
12 pages, 7215 KiB  
Article
Caprine Arthritis Encephalitis Virus Is Associated with Renal Lesions
by Brian G. Murphy, Diego Castillo, Asli Mete, Helena Vogel, Dayna Goldsmith, Marietta Barro and Omar Gonzales-Viera
Viruses 2021, 13(6), 1051; https://doi.org/10.3390/v13061051 - 1 Jun 2021
Cited by 7 | Viewed by 3868
Abstract
Caprine arthritis encephalitis virus (CAEV) is a monocyte/macrophage-tropic lentivirus that primarily infects goats resulting in a well-recognized set of chronic inflammatory syndromes focused on the joint synovium, tissues of the central nervous system, pulmonary interstitium and mammary gland. Clinically affected animals generally manifest [...] Read more.
Caprine arthritis encephalitis virus (CAEV) is a monocyte/macrophage-tropic lentivirus that primarily infects goats resulting in a well-recognized set of chronic inflammatory syndromes focused on the joint synovium, tissues of the central nervous system, pulmonary interstitium and mammary gland. Clinically affected animals generally manifest with one or more of these classic CAEV-associated tissue lesions; however, CAEV-associated renal inflammation in goats has not been reported in the peer-reviewed literature. Here we describe six goats with chronic, multisystemic CAEV infections in conjunction with CAEV-associated renal lesions. One of the animals had CAEV antigen-associated thrombotic arteritis resulting in infarction of both the kidney and heart. These goats had microscopic evidence of inflammatory renal injury (interstitial nephritis) with detectable renal immunolabeling for CAEV antigen in three of six animals and amplifiable proviral sequences consistent with CAEV in all six animals. Cardiac lesions (vascular, myocardial or endocardial) were also identified in four of six animals. Within the viral promoter (U3) region, known transcription factor binding sites (TFBSs) were generally conserved, although one viral isolate had a duplication of the U3 A region encoding a second gamma-activated site (GAS). Despite the TFBS conservation, the isolates demonstrated a degree of phylogenetic diversity. At present, the clinical consequence of CAEV-associated renal injury is not clear. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
Show Figures

Figure 1

14 pages, 1418 KiB  
Article
Antibody Responses in Cats Following Primary and Annual Vaccination against Feline Immunodeficiency Virus (FIV) with an Inactivated Whole-Virus Vaccine (Fel-O-Vax® FIV)
by Mark Westman, Dennis Yang, Jennifer Green, Jacqueline Norris, Richard Malik, Yasmin A. Parr, Mike McDonald, Margaret J. Hosie, Sue VandeWoude and Craig Miller
Viruses 2021, 13(3), 470; https://doi.org/10.3390/v13030470 - 12 Mar 2021
Cited by 6 | Viewed by 4606
Abstract
Although the antibody response induced by primary vaccination with Fel-O-Vax® FIV (three doses, 2–4 weeks apart) is well described, the antibody response induced by annual vaccination with Fel-O-Vax® FIV (single dose every 12 months after primary vaccination) and how it compares [...] Read more.
Although the antibody response induced by primary vaccination with Fel-O-Vax® FIV (three doses, 2–4 weeks apart) is well described, the antibody response induced by annual vaccination with Fel-O-Vax® FIV (single dose every 12 months after primary vaccination) and how it compares to the primary antibody response has not been studied. Residual blood samples from a primary FIV vaccination study (n = 11), and blood samples from cats given an annual FIV vaccination (n = 10), were utilized. Samples from all 21 cats were tested with a commercially available PCR assay (FIV RealPCRTM), an anti-p24 microsphere immunoassay (MIA), an anti-FIV transmembrane (TM; gp40) peptide ELISA, and a range of commercially available point-of-care (PoC) FIV antibody kits. PCR testing confirmed all 21 cats to be FIV-uninfected for the duration of this study. Results from MIA and ELISA testing showed that both vaccination regimes induced significant antibody responses against p24 and gp40, and both anti-p24 and anti-gp40 antibodies were variably present 12 months after FIV vaccination. The magnitude of the antibody response against both p24 and gp40 was significantly higher in the primary FIV vaccination group than in the annual FIV vaccination group. The differences in prime versus recall post-vaccinal antibody levels correlated with FIV PoC kit performance. Two FIV PoC kits that detect antibodies against gp40, namely Witness® and Anigen Rapid®, showed 100% specificity in cats recently administered an annual FIV vaccination, demonstrating that they can be used to accurately distinguish vaccination and infection in annually vaccinated cats. A third FIV PoC kit, SNAP® Combo, had 0% specificity in annually FIV-vaccinated cats, and should not be used in any cat with a possible history of FIV vaccination. This study outlines the antibody response to inactivated Fel-O-Vax® FIV whole-virus vaccine, and demonstrates how best to diagnose FIV infection in jurisdictions where FIV vaccination is practiced. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
Show Figures

Figure 1

20 pages, 4723 KiB  
Article
Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein
by Marlène Labrecque, Claude Marchand and Denis Archambault
Viruses 2020, 12(8), 900; https://doi.org/10.3390/v12080900 - 17 Aug 2020
Cited by 1 | Viewed by 4041
Abstract
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and [...] Read more.
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the CAEV Rev protein. These signals are key actors in the nucleocytoplasmic shuttling of a lentiviral Rev protein. Several deletion and alanine substitution mutants were generated from a plasmid encoding the CAEV Rev wild-type protein that was fused to the enhanced green fluorescent protein (EGFP). Following cell transfection, images were captured by confocal microscopy and the fluorescence was quantified in the different cell compartments. The results showed that the NLS region is localized between amino acids (aa) 59 to 75, has a monopartite-like structure and is exclusively composed of arginine residues. The NoLS was found to be partially associated with the NLS. Finally, the CAEV Rev protein’s NES mapped between aa 89 to 101, with an aa spacing between the hydrophobic residues that was found to be unconventional as compared to that of other retroviral Rev/Rev-like proteins. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 341 KiB  
Review
Serological, Molecular and Culture-Based Diagnosis of Lentiviral Infections in Small Ruminants
by Aphrodite I. Kalogianni, Ioannis Stavropoulos, Serafeim C. Chaintoutis, Ioannis Bossis and Athanasios I. Gelasakis
Viruses 2021, 13(9), 1711; https://doi.org/10.3390/v13091711 - 27 Aug 2021
Cited by 16 | Viewed by 3338
Abstract
Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a “gold [...] Read more.
Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a “gold standard” test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants’ humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections. Full article
(This article belongs to the Special Issue Non-Primate Lentiviruses 2021)
Back to TopTop