Applications of Biotechnology in Water and Wastewater Treatment

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: 31 October 2024 | Viewed by 934

Special Issue Editor


E-Mail Website
Guest Editor
School of Civil and Environmental Engineering, Faculty of Engineering & IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
Interests: water and wastewater treatment; stormwater harvesting; resource recovery; material synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the context of urbanization, climate change, and growing populations, the reuse of wastewater offers an important means of producing portable water in order to lessen the problem of water scarcity. Due to its low cost and minimal generation of greenhouse gases, biotechnology is increasingly being employed in various treatment procedures, including the treatment of water and wastewater.

The purpose of this Special Issue is to solicit original research articles or review papers addressing the application of biotechnology to wastewater treatment and environmental impact mitigation. The scope of this Special Issue includes the following:

  • Use of biotechnology to reduce heavy metal contamination in water.
  • Removal of nutrients and organics from water.
  • Biotechnology for the recovery of nutrients from water.

Dr. Md Abu Hasan Johir
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heavy metal removal
  • organics removal
  • biotechnology
  • water treatment
  • nutrients recovery

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 12128 KiB  
Article
Mechanism of Biological Transport and Transformation of Copper, Cadmium, and Zinc in Water by Chlorella
by Shaomin Liu, Mengyu Jiang, Jiating Wu, Xiaofeng Li and Jinglin Zhu
Water 2024, 16(13), 1906; https://doi.org/10.3390/w16131906 (registering DOI) - 3 Jul 2024
Viewed by 543
Abstract
This study investigates the effectiveness of Chlorella vulgaris in treating copper, cadmium, and zinc in aqueous solutions; the aim of this study was to examine the effects of various factors on the adsorption capacity of Chlorella in water. This study explored the intra- [...] Read more.
This study investigates the effectiveness of Chlorella vulgaris in treating copper, cadmium, and zinc in aqueous solutions; the aim of this study was to examine the effects of various factors on the adsorption capacity of Chlorella in water. This study explored the intra- and extracellular adsorption and accumulation patterns of copper (Cu(II)), cadmium (Cd(II)), and zinc (Zn(II)), revealing their molecular response mechanisms under the most suitable conditions. The adsorption capacity of Chlorella to Cu(II), Cd(II), and Zn(II) in water was 93.63%, 73.45%, and 85.41%, respectively. The adsorption mechanism for heavy metals is governed by both intracellular and extracellular diffusion, with intracellular absorption serving as a supplement and external uptake predominating. XRD, XPS, FTIR, SEM-EDX, and TEM-EDX analyses showed that there would be the formation of precipitates such as Cu2S, CuS2, CdS, and ZnSO4. The adsorption of Cu(II) involves its simultaneous reduction to Cu(I). Moreover, specific functional groups present on the cellular surface, such as amino, carboxyl, aldehyde, and ether groups, interact with heavy metal ions. In view of its efficient heavy metal adsorption capacity and biosafety, this study recommends Chlorella as a potential biosorbent for the bioremediation and environmental treatment of heavy metal contaminated water in the future. Full article
(This article belongs to the Special Issue Applications of Biotechnology in Water and Wastewater Treatment)
Show Figures

Graphical abstract

Back to TopTop