Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Study Population of the Gene-Environment Interaction (GxE) Study
4.2. Study Population and Data Used in the Replication
4.3. GWAS Data
4.4. Candidate Gene Selection
4.5. SNPs Extraction and Imputation
4.6. Environmental Factors Related to Estrogen Exposure
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kim, Y.S.; Kim, Z.; Kim, H.Y.; Kim, H.J.; Park, S.; Bae, S.Y.; Yoon, K.H.; Lee, S.B.; Lee, S.K.; et al. Breast Cancer Statistics in Korea in 2017: Data from a Breast Cancer Registry. J. Breast Cancer 2020, 23, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Kluttig, A.; Schmidt-Pokrzywniak, A. Established and Suspected Risk Factors in Breast Cancer Aetiology. Breast Care 2009, 4, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol. 2001, 2, 133–140. [Google Scholar] [CrossRef]
- Rojas, K.; Stuckey, A. Breast Cancer Epidemiology and Risk Factors. Clin. Obstet. Gynecol. 2016, 59, 651–672. [Google Scholar] [CrossRef] [PubMed]
- Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367. [Google Scholar] [CrossRef]
- Michailidou, K.; The Breast and Ovarian Cancer Susceptibility Collaboration; Hall, P.; Gonzalez-Neira, A.; Ghoussaini, M.; Dennis, J.; Milne, R.L.; Schmidt, M.K.; Chang-Claude, J.; Bojesen, S.E.; et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 2013, 45, 353–361. [Google Scholar] [CrossRef]
- Michailidou, K.; Beesley, J.; Lindstrom, S.; Canisius, S.; Dennis, J.; Lush, M.J.; Maranian, M.J.; Bolla, M.K.; Wang, Q.; Shah, M.; et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 2015, 47, 373–380. [Google Scholar] [CrossRef]
- Maas, P.; Barrdahl, M.; Joshi, A.D.; Auer, P.L.; Gaudet, M.M.; Milne, R.L.; Schumacher, F.R.; Anderson, W.F.; Check, D.; Chattopadhyay, S.; et al. Breast Cancer Risk from Modifiable and Nonmodifiable Risk Factors among White Women in the United States. JAMA Oncol. 2016, 2, 1295–1302. [Google Scholar] [CrossRef]
- Han, M.-R.; Long, J.; Choi, J.-Y.; Low, S.-K.; Kweon, S.-S.; Zheng, Y.; Cai, Q.; Shi, J.; Guo, X.; Matsuo, K.; et al. Genome-wide association study in East Asians identifies two novel breast cancer susceptibility loci. Hum. Mol. Genet. 2016, 25, 3361–3371. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Antoniou, A.C.; Easton, D.F.; Garcia-Closas, M. Genetic susceptibility to breast cancer. Mol. Oncol. 2010, 4, 174–191. [Google Scholar] [CrossRef]
- Stratton, M.R.; Rahman, N. The emerging landscape of breast cancer susceptibility. Nat. Genet. 2007, 40, 17–22. [Google Scholar] [CrossRef]
- Gauderman, W.J.; Zhang, P.; Morrison, J.L.; Lewinger, J.P. Finding novel genes by testing G × E interactions in a genome-wide association study. Genet. Epidemiol. 2013, 37, 603–613. [Google Scholar] [CrossRef]
- Nickels, S.; Truong, T.; Hein, R.; Stevens, K.; Buck, K.; Behrens, S.; Eilber, U.; Schmidt, M.; Häberle, L.; Vrieling, A.; et al. Evidence of Gene-Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors. PLoS Genet. 2013, 9, e1003284. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 2005, 6, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D. Gene-environment-wide association studies: Emerging approaches. Nat. Rev. Genet. 2010, 11, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Milne, R.L.; Network, G.; Gaudet, M.M.; Spurdle, A.B.; Fasching, P.A.; Couch, F.J.; Benítez, J.; Pérez, J.I.A.; Zamora, M.P.; Malats, N.; et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: A combined case-control study. Breast Cancer Res. 2010, 12, R110. [Google Scholar] [CrossRef]
- Travis, R.C.; Reeves, G.K.; Green, J.; Bull, D.; Tipper, S.J.; Baker, K.; Beral, V.; Peto, R.; Bell, J.; Zelenika, D.; et al. Gene-environment interactions in 7610 women with breast cancer: Prospective evidence from the Million Women Study. Lancet 2010, 375, 2143–2151. [Google Scholar] [CrossRef]
- Campa, D.; Kaaks, R.; Le Marchand, L.; Haiman, C.A.; Travis, R.C.; Berg, C.D.; Buring, J.E.; Chanock, S.J.; Diver, W.R.; Dostal, L.; et al. Interactions between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium. J. Natl. Cancer Inst. 2011, 103, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Hein, R.; Network, T.G.; Flesch-Janys, D.; Dahmen, N.; Beckmann, L.; Lindström, S.; Schoof, N.; Czene, K.; Mittelstraß, K.; Illig, T.; et al. A genome-wide association study to identify genetic susceptibility loci that modify ductal and lobular postmenopausal breast cancer risk associated with menopausal hormone therapy use: A two-stage design with replication. Breast Cancer Res. Treat. 2013, 138, 529–542. [Google Scholar] [CrossRef]
- Rudolph, A.; Hein, R.; Lindström, S.; Beckmann, L.; Behrens, S.; Liu, J.; Aschard, H.; Bolla, M.K.; Wang, J.; Truong, T.; et al. Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: A genome-wide interaction study. Endocr. Relat. Cancer 2013, 20, 875–887. [Google Scholar] [CrossRef]
- Barrdahl, M.; Canzian, F.; Joshi, A.D.; Travis, R.C.; Chang-Claude, J.; Auer, P.L.; Gapstur, S.M.; Gaudet, M.; Diver, W.R.; Henderson, B.E.; et al. Post-GWAS gene-environment interplay in breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79,000 women. Hum. Mol. Genet. 2014, 23, 5260–5270. [Google Scholar] [CrossRef]
- Schoeps, A.; Rudolph, A.; Seibold, P.; Dunning, A.M.; Milne, R.L.; Bojesen, S.E.; Swerdlow, A.; Andrulis, I.; Brenner, H.; Behrens, S.; et al. Identification of New Genetic Susceptibility Loci for Breast Cancer through Consideration of Gene-Environment Interactions. Genet. Epidemiol. 2014, 38, 84–93. [Google Scholar] [CrossRef]
- Rudolph, A.; Milne, R.L.; Truong, T.; Knight, J.A.; Seibold, P.; Flesch-Janys, D.; Behrens, S.; Eilber, U.; Bolla, M.K.; Wang, Q.; et al. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. Int. J. Cancer 2015, 136, E685–E696. [Google Scholar] [CrossRef] [PubMed]
- Hutter, C.M.; Mechanic, L.E.; Chatterjee, N.; Kraft, P.; Gillanders, E.M.; On Behalf of the NCI Gene-Environment Think Tank. Gene-Environment Interactions in Cancer Epidemiology: A National Cancer Institute Think Tank Report. Genet. Epidemiol. 2013, 37, 643–657. [Google Scholar] [CrossRef]
- Travis, R.C.; Key, T.J. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003, 5, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Burgos-Aceves, M.A.; Smith, Y. Estrogen repression of microRNA as a potential cause of cancer. Biomed. Pharmacother. 2016, 78, 234–238. [Google Scholar] [CrossRef]
- Cohen, A.; Burgos-Aceves, M.A.; Kahan, T.; Smith, Y. Estrogen Repression of MicroRNAs Is Associated with High Guanine Content in the Terminal Loop Sequences of Their Precursors. Biomedicines 2017, 5, 47. [Google Scholar] [CrossRef]
- Xu, J.; Wu, R.-C.; O’Malley, B.W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 2009, 9, 615–630. [Google Scholar] [CrossRef]
- Walsh, C.A.; Qin, L.; Tien, J.C.-Y.; Young, L.S.; Xu, J. The Function of Steroid Receptor Coactivator-1 in Normal Tissues and Cancer. Int. J. Biol. Sci. 2012, 8, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Fleming, F.J.; Hill, A.D.K.; McDermott, E.W.; O’Higgins, N.J.; Young, L.S. Differential Recruitment of Coregulator Proteins Steroid Receptor Coactivator-1 and Silencing Mediator for Retinoid and Thyroid Receptors to the Estrogen Receptor-Estrogen Response Element by β-Estradiol and 4-Hydroxytamoxifen in Human Breast Cancer. J. Clin. Endocrinol. Metab. 2004, 89, 375–383. [Google Scholar] [CrossRef]
- Fleming, F.J.; Myers, E.R.; Kelly, G.M.; Crotty, T.B.; McDermott, E.W.; O’Higgins, N.J.; Hill, A.D.K.; Young, L.S. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 2004, 57, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, T.; Shih, H.-C.; Miyamoto, T.; Feng, Y.-Z.; Uchikawa, J.; Itoh, K.; Konishi, I. Cyclic Changes in the Expression of Steroid Receptor Coactivators and Corepressors in the Normal Human Endometrium. J. Clin. Endocrinol. Metab. 2003, 88, 871–878. [Google Scholar] [CrossRef]
- Wieser, F.; Schneeberger, C.; Hudelist, G.; Singer, C.; Kurz, C.; Nagele, F.; Gruber, C.; Huber, J.C.; Tschugguel, W. Endometrial nuclear receptor co-factors SRC-1 and N-CoR are increased in human endometrium during menstruation. Mol. Hum. Reprod. 2002, 8, 644–650. [Google Scholar] [CrossRef]
- Chen, L.; Kang, H.; Jin, G.-J.; Chen, X.; Zhang, Q.-Y.; Lao, W.-T.; Li, R. The association between a novel polymorphism (rs1062577) in ESR1 and breast cancer susceptibility in the Han Chinese women. Gynecol. Endocrinol. 2016, 32, 553–556. [Google Scholar] [CrossRef]
- Li, N.; Dong, J.; Hu, Z.; Shen, H.; Dai, M. Potentially functional polymorphisms in ESR1 and breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2009, 121, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Long, J.; Gao, Y.-T.; Li, C.; Zheng, Y.; Xiang, Y.-B.; Wen, W.; Levy, S.; Deming, S.L.; Haines, J.L.; et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 2009, 41, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Dunning, A.M.; Healey, C.S.; Baynes, C.; Maia, A.-T.; Scollen, S.; Vega, A.; Rodríguez, R.; Barbosa-Morais, N.L.; Ponder, B.A.; Low, Y.-L.; et al. Association of ESR1 gene tagging SNPs with breast cancer risk. Hum. Mol. Genet. 2009, 18, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R.; Wu, Y.-M.; Vats, P.; Su, F.; Lonigro, R.J.; Cao, X.; Kalyana-Sundaram, S.; Wang, R.; Ning, Y.; Hodges, L.; et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 2013, 45, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Jeselsohn, R.; Buchwalter, G.; De Angelis, C.; Brown, M.; Schiff, R. ESR1 mutations—A mechanism for acquired endocrine resistance in breast cancer. Nat. Rev. Clin. Oncol. 2015, 12, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Alluri, P.G.; Speers, C.; Chinnaiyan, A.M. Estrogen receptor mutations and their role in breast cancer progression. Breast Cancer Res. 2014, 16, 494. [Google Scholar] [CrossRef]
- Zhang, B.; Shu, X.-O.; Delahanty, R.J.; Zeng, C.; Michailidou, K.; Bolla, M.K.; Wang, Q.; Dennis, J.; Wen, W.; Long, J.; et al. Height and Breast Cancer Risk: Evidence from Prospective Studies and Mendelian Randomization. J. Natl. Cancer Inst. 2015, 107, 15–32. [Google Scholar] [CrossRef]
- Friedenreich, C.M. Review of anthropometric factors and breast cancer risk. Eur. J. Cancer Prev. 2001, 10, 15–32. [Google Scholar] [CrossRef]
- Okasha, M.; McCarron, P.; Gunnell, D.; Smith, G.D. Exposures in Childhood, Adolescence and Early Adulthood and Breast Cancer Risk: A Systematic Review of the Literature. Breast Cancer Res. Treat. 2003, 78, 223–276. [Google Scholar] [CrossRef]
- Gunnell, D.; Okasha, M.; Smith, G.D.; Oliver, S.; Sandhu, J.; Holly, J. Height, leg length, and cancer risk: A systematic review. Epidemiol. Rev. 2001, 23, 313–342. [Google Scholar] [CrossRef] [PubMed]
- Ahlgren, M.; Melbye, M.; Wohlfahrt, J.; Sørensen, T.I.A. Growth Patterns and the Risk of Breast Cancer in Women. N. Engl. J. Med. 2004, 351, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Simm, P.J.; Bajpai, A.; Russo, V.C.; Werther, G.A. Estrogens and growth. Pediatr. Endocrinol. Rev. 2008, 6, 32–41. [Google Scholar] [PubMed]
- Khosla, S. Oestrogen, bones and men: When testosterone just isn’t enough. Clin. Endocrinol. 2002, 56, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Rochira, V.; Kara, E.; Carani, C. The Endocrine Role of Estrogens on Human Male Skeleton. Int. J. Endocrinol. 2015, 2015, 165215. [Google Scholar] [CrossRef]
- Carter, S.L. The Genetic Basis of Human Height: The Role of Estrogen. Ph.D. Thesis, Queensland University of Technology, Brisbane, QLD, Australia, 2008. [Google Scholar]
- Grumbach, M.M.; Auchus, R.J. Estrogen: Consequences and Implications of Human Mutations in Synthesis and Action1. J. Clin. Endocrinol. Metab. 1999, 84, 4677–4694. [Google Scholar] [CrossRef] [PubMed]
- Emons, J.; Chagin, A.S.; Sävendahl, L.; Karperien, M.; Wit, J.M. Mechanisms of growth plate maturation and epiphyseal fusion. Horm. Res. Paediatr. 2011, 75, 383–391. [Google Scholar] [CrossRef]
- Chagin, A.; Sävendahl, L. Estrogens and growth: Review. Pediatr. Endocrinol. Rev. 2007, 4, 329–334. [Google Scholar] [PubMed]
- Dahlgren, A.; Lundmark, P.; Axelsson, T.; Lind, L.; Syvänen, A.-C. Association of the Estrogen Receptor 1 (ESR1) Gene with Body Height in Adult Males from Two Swedish Population Cohorts. PLoS ONE 2008, 3, e1807. [Google Scholar] [CrossRef]
- Schuit, S.C.E.; Van Meurs, J.B.J.; Bergink, A.P.; Van Der Klift, M.; Fang, Y.; Leusink, G.; Hofman, A.; Van Leeuwen, J.P.T.M.; Uitterlinden, A.G.; Pols, H.A.P. Height in Pre- and Postmenopausal Women Is Influenced by Estrogen Receptor α Gene Polymorphisms. J. Clin. Endocrinol. Metab. 2004, 89, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Rabin, J.; Stone, J.; Berkowitz, G. Association of an Estrogen Receptor Variant with Increased Height in Women. Horm. Metab. Res. 1994, 26, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Dick, D.M.; Agrawal, A.; Keller, M.C.; Adkins, A.; Aliev, F.; Monroe, S.; Hewitt, J.K.; Kendler, K.S.; Sher, K.J. Candidate Gene-Environment Interaction Research. Perspect. Psychol. Sci. 2015, 10, 37–59. [Google Scholar] [CrossRef]
- Munafò, M.R. Understanding the candidate gene × environment interaction debate: Epistemological or evidential divide? Int. J. Epidemiol. 2015, 44, 1130–1132. [Google Scholar] [CrossRef]
- Border, R.; Keller, M.C. Commentary: Fundamental problems with candidate gene-by-environment interaction studies—reflections on Moore and Thoemmes (2016). J. Child Psychol. Psychiatry 2017, 58, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.R. Commentary: What is the case for candidate gene approaches in the era of high-throughput genomics? A response to Border and Keller (2017). J. Child Psychol. Psychiatry 2017, 58, 331–334. [Google Scholar] [CrossRef]
- Joshi, A.D.; Lindström, S.; Hüsing, A.; Barrdahl, M.; VanderWeele, T.J.; Campa, D.; Canzian, F.; Gaudet, M.M.; Figueroa, J.D.; Baglietto, L.; et al. Additive interactions between susceptibility single-nucleotide polymorphisms identified in genome-wide association studies and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium. Am. J. Epidemiol. 2014, 180, 1018–1027. [Google Scholar] [CrossRef]
- Usset, J.L.; Raghavan, R.; Tyrer, J.P.; McGuire, V.; Sieh, W.; Webb, P.; Chang-Claude, J.; Rudolph, A.; Anton-Culver, H.; Berchuck, A.; et al. Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors. Cancer Epidemiol. Biomark. Prev. 2016, 25, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, A.; Chang-Claude, J.; Schmidt, M.K. Gene-environment interaction and risk of breast cancer. Br. J. Cancer 2016, 114, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Barrdahl, M.; Rudolph, A.; Hopper, J.L.; Southey, M.C.; Broeks, A.; Fasching, P.A.; Beckmann, M.W.; Gago-Dominguez, M.; Castelao, J.E.; Guénel, P.; et al. Gene-environment interactions involving functional variants: Results from the Breast Cancer Association Consortium. Int. J. Cancer 2017, 141, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.M.; Lindström, S.; Behrens, S.; Wang, X.; Michailidou, K.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Pharoah, P.D.P.; et al. Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int. J. Epidemiol. 2020, 49, 216–232. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, S.P.; Holmes, M.D.; Pollak, M.N.; Barbieri, R.L.; Hankinson, S.E. Racial Differences in Premenopausal Endogenous Hormones. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2147–2153. [Google Scholar] [CrossRef]
- Setiawan, V.W.; Pike, M.C.; Kolonel, L.N.; Nomura, A.M.; Goodman, M.T.; Henderson, B.E. Racial/Ethnic Differences in Endometrial Cancer Risk: The Multiethnic Cohort Study. Am. J. Epidemiol. 2006, 165, 262–270. [Google Scholar] [CrossRef]
- Dunn, B.K.; Agurs-Collins, T.; Browne, D.; Lubet, R.; Johnson, K.A. Health disparities in breast cancer: Biology meets socioeconomic status. Breast Cancer Res. Treat. 2010, 121, 281–292. [Google Scholar] [CrossRef]
- Sexton, K.R.; Franzini, L.; Day, R.S.; Brewster, A.; Vernon, S.W.; Bondy, M.L. A review of body size and breast cancer risk in Hispanic and African American women. Cancer 2011, 117, 5271–5281. [Google Scholar] [CrossRef] [PubMed]
- Reding, K.W.; Chen, C.; Lowe, K.; Doody, D.R.; Carlson, C.S.; Chen, C.T.; Houck, J.; Weiss, L.K.; Marchbanks, P.A.; Bernstein, L.; et al. Estrogen-related genes and their contribution to racial differences in breast cancer risk. Cancer Causes Control 2012, 23, 671–681. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. J. Int. Du Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Korean Breast Cancer Society. Breast Cancer Facts & Figures 2019; Korean Breast Cancer Society: Seoul, Korea, 2019. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Cho, G.J.; Park, H.T.; Shin, J.H.; Hur, J.Y.; Kim, Y.T.; Kim, S.H.; Lee, K.W.; Kim, T. Age at menarche in a Korean population: Secular trends and influencing factors. Eur. J. Pediatrics 2010, 169, 89–94. [Google Scholar] [CrossRef]
- Lee, M.-H.; Kim, S.H.; Oh, M.; Lee, K.-W.; Park, M.-J. Age at menarche in Korean adolescents: Trends and influencing factors. Reprod. Health 2016, 13, 121. [Google Scholar] [CrossRef]
- Kim, J.Y.; Oh, I.H.; Lee, E.Y.; Choi, K.S.; Choe, B.K.; Yoon, T.Y.; Lee, C.G.; Moon, J.S.; Shin, S.H.; Choi, J.M. Anthropometric changes in children and adolescents from 1965 to 2005 in Korea. Am. J. Phys. Anthropol. 2008, 136, 230–236. [Google Scholar] [CrossRef]
- Moon, J.S. Secular trends of body sizes in Korean children and adolescents: From 1965 to 2010. Korean J. Pediatrics 2011, 54, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Park, S.K.; Sung, H.; Song, N.; Han, W.; Noh, D.Y.; Ahn, S.H.; Yoo, K.Y.; Choi, J.Y.; Kang, D. Association between chronological change of reproductive factors and breast cancer risk defined by hormone receptor status: Results from the Seoul Breast Cancer Study. Breast Cancer Res. Treat. 2013, 140, 557–565. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, J.Y.; Sung, H.; Choi, J.Y.; Park, S.K.; Lee, K.M.; Kim, Y.J.; Go, M.J.; Li, L.; Cho, Y.S.; et al. A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: Results from the Seoul Breast Cancer Study. Breast Cancer Res. 2012, 14, R56. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Zhang, B.; Sung, H.; Low, S.K.; Kweon, S.S.; Lu, W.; Shi, J.; Long, J.; Wen, W.; Choi, J.Y.; et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nat. Genet. 2014, 46, 886–890. [Google Scholar] [CrossRef]
- Li, J.; Humphreys, K.; Heikkinen, T.; Aittomaki, K.; Blomqvist, C.; Pharoah, P.D.; Dunning, A.M.; Ahmed, S.; Hooning, M.J.; Martens, J.W.; et al. A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res. Treat. 2011, 126, 717–727. [Google Scholar] [CrossRef]
- Haiman, C.A.; Hankinson, S.E.; De Vivo, I.; Guillemette, C.; Ishibe, N.; Hunter, D.J.; Byrne, C. Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res. Treat. 2003, 77, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Li, D.K.; Wu, J.; Zhang, Z.; Gao, E. Joint effects of the CYP1A1 MspI, ERalpha PvuII, and ERalpha XbaI polymorphisms on the risk of breast cancer: Results from a population-based case-control study in Shanghai, China. Cancer Epidemiol. Biomark. Prev. 2006, 15, 342–347. [Google Scholar] [CrossRef]
- Torresan, C.; Oliveira, M.M.; Torrezan, G.T.; de Oliveira, S.F.; Abuazar, C.S.; Losi-Guembarovski, R.; Lima, R.S.; Urban, C.A.; Cavalli, I.J.; Ribeiro, E.M. Genetic polymorphisms in oestrogen metabolic pathway and breast cancer: A positive association with combined CYP/GST genotypes. Clin. Exp. Med. 2008, 8, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Antognelli, C.; Del Buono, C.; Ludovini, V.; Gori, S.; Talesa, V.N.; Crino, L.; Barberini, F.; Rulli, A. CYP17, GSTP1, PON1 and GLO1 gene polymorphisms as risk factors for breast cancer: An Italian case-control study. BMC Cancer 2009, 9, 115. [Google Scholar] [CrossRef]
- Reding, K.W.; Weiss, N.S.; Chen, C.; Li, C.I.; Carlson, C.S.; Wilkerson, H.W.; Farin, F.M.; Thummel, K.E.; Daling, J.R.; Malone, K.E. Genetic polymorphisms in the catechol estrogen metabolism pathway and breast cancer risk. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Cerne, J.Z.; Novakovic, S.; Frkovic-Grazio, S.; Pohar-Perme, M.; Stegel, V.; Gersak, K. Estrogen metabolism genotypes, use of long-term hormone replacement therapy and risk of postmenopausal breast cancer. Oncol. Rep. 2011, 26, 479–485. [Google Scholar] [CrossRef]
- Cerne, J.Z.; Pohar-Perme, M.; Novakovic, S.; Frkovic-Grazio, S.; Stegel, V.; Gersak, K. Combined effect of CYP1B1, COMT, GSTP1, and MnSOD genotypes and risk of postmenopausal breast cancer. J. Gynecol. Oncol. 2011, 22, 110–119. [Google Scholar] [CrossRef]
- dos Santos, R.A.; Teixeira, A.C.; Mayorano, M.B.; Carrara, H.H.; de Andrade, J.; Takahashi, C.S. Variability in estrogen-metabolizing genes and their association with genomic instability in untreated breast cancer patients and healthy women. J. Biomed. Biotechnol. 2011, 2011, 571784. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, K.S.; Breyer, J.P.; Bradley, K.M.; Schuyler, P.A.; Plummer, W.D., Jr.; Freudenthal, M.E.; Trentham-Dietz, A.; Newcomb, P.A.; Sanders, M.E.; Page, D.L.; et al. A multistage association study identifies a breast cancer genetic locus at NCOA7. Cancer Res. 2011, 71, 3881–3888. [Google Scholar] [CrossRef]
- Lee, E.; Schumacher, F.; Lewinger, J.P.; Neuhausen, S.L.; Anton-Culver, H.; Horn-Ross, P.L.; Henderson, K.D.; Ziogas, A.; Van Den Berg, D.; Bernstein, L.; et al. The association of polymorphisms in hormone metabolism pathway genes, menopausal hormone therapy, and breast cancer risk: A nested case-control study in the California Teachers Study cohort. Breast Cancer Res. 2011, 13, R37. [Google Scholar] [CrossRef]
- Johnson, N.; Walker, K.; Gibson, L.J.; Orr, N.; Folkerd, E.; Haynes, B.; Palles, C.; Coupland, B.; Schoemaker, M.; Jones, M.; et al. CYP3A variation, premenopausal estrone levels, and breast cancer risk. J. Natl. Cancer Inst. 2012, 104, 657–669. [Google Scholar] [CrossRef]
- Martinez-Ramirez, O.C.; Perez-Morales, R.; Castro, C.; Flores-Diaz, A.; Soto-Cruz, K.E.; Astorga-Ramos, A.; Gonsebatt, M.E.; Casas, L.; Valdes-Flores, M.; Rubio, J. Polymorphisms of catechol estrogens metabolism pathway genes and breast cancer risk in Mexican women. Breast (Edinb. Scotl.) 2013, 22, 335–343. [Google Scholar] [CrossRef]
- Johnson, N.; Dudbridge, F.; Orr, N.; Gibson, L.; Jones, M.E.; Schoemaker, M.J.; Folkerd, E.J.; Haynes, B.P.; Hopper, J.L.; Southey, M.C.; et al. Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: A case-control study. Breast Cancer Res. 2014, 16, R51. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Thomas, D.J.; Munro, H.M.; Abecasis, G.R. Sequence features in regions of weak and strong linkage disequilibrium. Genome Res. 2005, 15, 1519–1534. [Google Scholar] [CrossRef]
- Hsu, L.; Jiao, S.; Dai, J.Y.; Hutter, C.; Peters, U.; Kooperberg, C. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet. Epidemiol. 2012, 36, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010, 26, 2190–2191. [Google Scholar] [CrossRef] [PubMed]
- Matuchansky, C. Deep medicine, artificial intelligence, and the practising clinician. Lancet 2019, 394, 736. [Google Scholar] [CrossRef]
Demographic and Reproductive Factors | Cases N = 1970 | Controls N = 2052 | OR c | 95% CI | ||
---|---|---|---|---|---|---|
Mean ± SD | % | Mean ± SD | % | |||
Age | 49.0 ± 8.26 | 51.4 ± 7.75 | 0.99 | 0.98–1.01 | ||
Family history. yes | 4.8 | 1.8 | 2.64 | 1.77–3.94 | ||
Height | 157.9 ± 5.04 | 155.9 ± 5.00 | 1.07 | 1.06–1.08 | ||
<160 cm | 59.6 | 75.7 | 1.00 | reference | ||
≥160 cm | 40.4 | 24.3 | 1.92 | 1.67–2.20 | ||
BMI (kg/m2) | 23.2 ± 2.94 | 23.7 ± 2.96 | 0.97 | 0.95–1.00 | ||
<25 | 76.8 | 71.2 | 1.00 | reference | ||
≥25 | 23.2 | 28.9 | 0.81 | 0.69–0.93 | ||
Menarche age | 14.8 ± 1.65 | 15.2 ± 1.77 | 0.90 | 0.86–0.93 | ||
≥14 years | 78.9 | 85.0 | 1.00 | reference | ||
<14 years | 21.1 | 15.0 | 1.27 | 1.07–1.50 | ||
Ever pregnancy | 93.5 | 92.8 | 0.26 | 0.14–0.46 | ||
Age at FFTP a | 25.9 ±3.48 | 25.1 ± 3.36 | 1.05 | 1.03–1.07 | ||
<27 years | 55.6 | 66.4 | 1.00 | reference | ||
Nulliparity or ≥27 years | 44.4 | 33.6 | 1.49 | 1.30–1.70 | ||
No. of children | 2.2 ± 0.85 | 2.3 ± 0.91 | 1.06 | 0.97–1.16 | ||
≥2 | 85.2 | 88.2 | 1.00 | reference | ||
<2 | 14.8 | 11.8 | 1.11 | 0.91–1.36 | ||
Never breastfeeding | 22.3 | 14.5 | 1.31 d | 1.10–1.57 | ||
Breastfeeding duration (months) | 18.0 ± 22.59 | 24.0 ± 21.53 | 0.99 d | 0.99–1.00 | ||
Breastfeeding duration per child (months) | 7.3 ± 8.01 | 9.9 ± 7.27 | 0.97 d | 0.96–0.98 | ||
≥2.5 month | 45.1 | 68.3 | 1.00 | reference | ||
<2.5 month | 54.9 | 31.7 | 3.81 d | 3.16–4.59 | ||
Duration of EEBF b | 12.5 ± 6.78 | 11.7 ± 8.00 | 1.04 e | 1.02–1.05 | ||
<13 years | 61.1 | 76.2 | 1.00 | reference | ||
≥13 years | 38.9 | 23.8 | 1.75 e | 1.51–2.03 | ||
Postmenopausal women | 38.2 | 54.8 | 0.60 | 0.50–0.72 | ||
Age at menopause | 48.5 ± 5.40 | 49.2 ± 4.55 | 0.96 | 0.94–0.98 |
SNP | Chromosome | Position_b36 | Gene | Minor/Major_Allele | MAF | ||
rs13035764 | 2 | 24571432 | NCOA1 | G/C | 0.2971 | ||
N(Cases/Controls) | OR a (95%CI) | Analysis methods | Environment | p-2df | Threshold | p-GxE | |
3925(1949/1976) | 0.84 (0.76–0.93) | Weighted GE|2df | Age at menarche | 1.2 × 10−3 | 0.005 b | 0.0524 | |
SNP | Chromosome | Position_b36 | Gene | Minor/Major_Allele | MAF | ||
rs851998 | 6 | 152025031 | ESR1 | A/G | 0.4426 | ||
N(Cases/Controls) | OR a (95%CI) | Analysis methods | Environment | p-2df | Threshold | p-GxE | |
3940(1955/1985) | 0.82 (0.75–0.90) | Subset GE|2df | height | 6.8 × 10−5 | 0.000110 c | 0.0471 |
Study | Exposure | Category | N(Cases/Controls) | OR | 95% CI | p-GxE |
---|---|---|---|---|---|---|
SEBCS | Age at menarche < 14 years old a | Effect of E in overall | 4022(1970/2052) | 1.27 | 1.07–1.50 | 0.0524 |
E|rs13035764_CC | 1963(1007/956) | 1.19 | 0.95–1.51 | |||
E|rs13035764_CG | 1706(810/896) | 1.17 | 0.89–1.53 | |||
E|rs13035764_GG | 337(147/190) | 2.85 | 1.43–5.67 | |||
Height ≥ 160 cm b | Effect of E in overall | 4022(1970/2052) | 1.92 | 1.67–2.20 | 0.0471 | |
E|rs851998_GG | 1281(677/604) | 1.53 | 1.20–1.95 | |||
E|rs851998_GA | 1921(938/983) | 2.03 | 1.65–2.49 | |||
E|rs851998_AA | 819(355/464) | 2.39 | 1.74–3.29 | |||
BCAC-European | Age at menarche < 12 years old a | Effect of E in overall | 62,485(36,894/25,591) | 1.03 | 0.99–1.08 | 0.5314 |
E|rs13035764_CC | 9953(5921/4032) | 1.02 | 0.91–1.14 | |||
E|rs13035764_CG | 34,124(20,140/13,984) | 1.03 | 0.97–1.09 | |||
E|rs13035764_GG | 18,408(10,833/7575) | 1.05 | 0.97–1.14 | |||
Height ≥ 169 cm b | Effect of E in overall | 56,363(31,994/24,369) | 0.97 | 0.93–1.01 | 0.2425 | |
E|rs851998_GG | 27,224(15,513/11,711) | 0.93 | 0.88–0.99 | |||
E|rs851998_GA | 23,843(13,459/10,384) | 0.99 | 0.93–1.05 | |||
E|rs851998_AA | 5296(3022/2274) | 1.03 | 0.90–1.17 | |||
BCAC-Asian | Age at menarche < 12 years old a | Effect of E in overall | 9047(4392/4655) | 0.97 | 0.82–1.14 | 0.7817 |
E|rs13035764_CC | 4867(2407/2460) | 0.95 | 0.75–1.21 | |||
E|rs13035764_CG | 3504(1666/1838) | 0.99 | 0.76–1.28 | |||
E|rs13035764_GG | 676(319/357) | 1.04 | 0.57–1.91 | |||
Height ≥ 160 cm b | Effect of E in overall | 5789(2879/2910) | 1.22 | 1.08–1.39 | 0.4642 | |
E|rs851998_GG | 1751(899/852) | 1.20 | 0.95–1.52 | |||
E|rs851998_GA | 2846(1422/1424) | 1.19 | 0.99–1.42 | |||
E|rs851998_AA | 1192(558/634) | 1.38 | 1.04–1.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Choi, J.-Y.; Choi, J.; Chung, S.; Song, N.; Park, S.K.; Han, W.; Noh, D.-Y.; Ahn, S.-H.; Lee, J.W.; et al. Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies? Cancers 2021, 13, 2370. https://doi.org/10.3390/cancers13102370
Park J, Choi J-Y, Choi J, Chung S, Song N, Park SK, Han W, Noh D-Y, Ahn S-H, Lee JW, et al. Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies? Cancers. 2021; 13(10):2370. https://doi.org/10.3390/cancers13102370
Chicago/Turabian StylePark, JooYong, Ji-Yeob Choi, Jaesung Choi, Seokang Chung, Nan Song, Sue K. Park, Wonshik Han, Dong-Young Noh, Sei-Hyun Ahn, Jong Won Lee, and et al. 2021. "Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?" Cancers 13, no. 10: 2370. https://doi.org/10.3390/cancers13102370