Revamping Non-Small Cell Lung Cancer Treatments in Stages II and III: Preparing Healthcare for Cutting-Edge Immuno-Oncology Regimens
Abstract
:Simple Summary
Abstract
1. Introduction
Diagnosis and Preoperative Assessment
2. Adjuvant and Neoadjuvant Systemic Therapies
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batra, U.; Prabhash, K.; Agarwal, J.P.; Darlong, L.; Munshi, A.; Penumadu, P.; Thangakunam, B.; Bansal, A. Clinical management of stage III non-small cell lung cancer in India: An expert consensus statement. Asia Pac. J. Clin. Oncol. 2023, 19, 606–617. [Google Scholar] [CrossRef]
- John, A.O.; Ramnath, N. Neoadjuvant Versus Adjuvant Systemic Therapy for Early-Stage Non-Small Cell Lung Cancer: The Changing Landscape Due to Immunotherapy. Oncologist 2023, 28, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Mountzios, G.; Remon, J.; Hendriks, L.E.L.; Garcia-Campelo, R.; Rolfo, C.; Van Schil, P.; Forde, P.M.; Besse, B.; Subbiah, V.; Reck, M.; et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer—Opportunities and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 664–677. [Google Scholar] [CrossRef]
- Guarize, J.; Spaggiari, L.; Bertolaccini, L. In EBUS Signo Vinces: New Indications in Thoracic Oncology for Mediastinal Lymph Node Staging Using Endobronchial Ultrasound. Front. Oncol. 2022, 12, 934986. [Google Scholar] [CrossRef]
- Guarize, J.; Diotti, C.; Casiraghi, M.; Donghi, S.; Di Tonno, C.; Mancuso, P.; Zorzino, L.; Sedda, G.; Radice, D.; Bertolaccini, L.; et al. Diagnostic Performance and Cell Count of EBUS-TBNA Needle Gauges: A Prospective Trial. J. Clin. Med. 2023, 12, 4033. [Google Scholar] [CrossRef]
- King, J.; Shah, D.; Hewitt, K.; Punjabi, A.; Marshall, K.; Balata, H.; Brockelsby, C.; Sinnott, N.; Lyons, J.; Martin, J.; et al. The diagnostic pathway in lung cancer patients with best supportive care decisions: Are there lessons to be learnt? Clin. Med. 2022, 22, 246–250. [Google Scholar] [CrossRef]
- Gallina, F.T.; Bertolaccini, L.; Forcella, D.; Mohamed, S.; Ceddia, S.; Melis, E.; Fusco, F.; Bardoni, C.; Marinelli, D.; Buglioni, S.; et al. Analysis of Molecular Biomarkers in Resected Early-Stage Non-Small Cells Lung Cancer: A Narrative Review. Cancers 2022, 14, 1949. [Google Scholar] [CrossRef]
- Tsuboi, M.; Herbst, R.S.; John, T.; Kato, T.; Majem, M.; Grohe, C.; Wang, J.; Goldman, J.W.; Lu, S.; Su, W.C.; et al. Overall Survival with Osimertinib in Resected EGFR-Mutated NSCLC. N. Engl. J. Med. 2023, 389, 137–147. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Zhang, J.-T.; Wu, Y.-L. What We Have Learned From Adjuvant Therapy for Resected EGFR-Mutant Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 217–220. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Dziadziuszko, R.; Ahn Jin, S.; Barlesi, F.; Nishio, M.; Lee Dae, H.; Lee, J.-S.; Zhong, W.; Horinouchi, H.; Mao, W.; et al. Alectinib in Resected ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 1265–1276. [Google Scholar] [CrossRef]
- Antonia Scott, J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee Ki, H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Ciani, O.; Manyara, A.M.; Davies, P.; Stewart, D.; Weir, C.J.; Young, A.E.; Blazeby, J.; Butcher, N.J.; Bujkiewicz, S.; Chan, A.W.; et al. A framework for the definition and interpretation of the use of surrogate endpoints in interventional trials. EClinicalMedicine 2023, 65, 102283. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Bertolaccini, L.; Casiraghi, M.; Petrella, F.; Galetta, D.; Guarize, J.; de Marinis, F.; Spaggiari, L. Predictors, surrogate, and patient-reported outcomes in immunotherapy and salvage surgery for unresectable lung cancer: A single-center retrospective study. Updates Surg. 2023, 75, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: A meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ 1995, 311, 899–909. [Google Scholar] [CrossRef]
- Pignon, J.P.; Tribodet, H.; Scagliotti, G.V.; Douillard, J.Y.; Shepherd, F.A.; Stephens, R.J.; Dunant, A.; Torri, V.; Rosell, R.; Seymour, L.; et al. Lung adjuvant cisplatin evaluation: A pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 2008, 26, 3552–3559. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Attili, I.; de Marinis, F. Neoadjuvant Chemotherapy Plus Immunotherapy in Early-Stage Resectable Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 2871–2877. [Google Scholar] [CrossRef] [PubMed]
- Provencio, M.; Calvo, V.; Romero, A.; Spicer, J.D.; Cruz-Bermudez, A. Treatment Sequencing in Resectable Lung Cancer: The Good and the Bad of Adjuvant Versus Neoadjuvant Therapy. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 711–728. [Google Scholar] [CrossRef]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef]
- Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.H.; Gao, S.; Chen, K.N.; Dooms, C.; Majem, M.; Eigendorff, E.; et al. Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 491–503. [Google Scholar] [CrossRef]
- Schumann, C.; Cascone, T.; Provencio, M.; Sepesi, B.; Lu, S.; Aanur, N.; Li, S.; Spicer, J. CheckMate 77 T: A phase 3 trial of neoadjuvant nivolumab (NIVO) + chemotherapy (chemo) followed by adjuvant NIVO in resectable early-stage non-small cell lung cancer (NSCLC). Pneumologie 2021, 75, P642. [Google Scholar] [CrossRef]
- Chaft, J.E.; Oezkan, F.; Kris, M.G.; Bunn, P.A.; Wistuba, I.I.; Kwiatkowski, D.J.; Owen, D.H.; Tang, Y.; Johnson, B.E.; Lee, J.M.; et al. Neoadjuvant atezolizumab for resectable non-small cell lung cancer: An open-label, single-arm phase II trial. Nat. Med. 2022, 28, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.N.; Wei, A.Z.; Shu, C.A. Neoadjuvant immunotherapy in resectable non-small-cell lung cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231163798. [Google Scholar] [CrossRef] [PubMed]
- Cascone, T.; Kar, G.; Spicer, J.D.; Garcia-Campelo, R.; Weder, W.; Daniel, D.B.; Spigel, D.R.; Hussein, M.; Mazieres, J.; Oliveira, J.; et al. Neoadjuvant Durvalumab Alone or Combined with Novel Immuno-Oncology Agents in Resectable Lung Cancer: The Phase II NeoCOAST Platform Trial. Cancer Discov. 2023, 13, 2394–2411. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.P.; Adashek, J.J.; Reuss, J.E.; West, H.J.; Mansfield, A.S. Perioperative Immune Checkpoint Inhibition in Early-Stage Non-Small Cell Lung Cancer: A Review. JAMA Oncol. 2023, 9, 135–142. [Google Scholar] [CrossRef]
- Tankel, J.; Spicer, J.; Chu, Q.; Fiset, P.O.; Kidane, B.; Leighl, N.B.; Joubert, P.; Maziak, D.; Palma, D.; McGuire, A.; et al. Canadian Consensus Recommendations for the Management of Operable Stage II/III Non-Small-Cell Lung Cancer: Results of a Modified Delphi Process. Curr. Oncol. 2023, 30, 10363–10384. [Google Scholar] [CrossRef]
Investigation | Purpose | Details |
---|---|---|
Chest and abdomen CT scan | Assess primary and metastatic disease spread | Provides detailed images of the chest and abdomen to detect primary tumours and metastases |
PET scan | Evaluate metabolic activity of lesions | Detects areas of increased metabolic activity, helping to identify malignant lesions and metastases |
Brain imaging (MRI or contrast-enhanced CT scan) | Detect brain metastases | MRI or CT scans of the brain to identify the presence of metastatic lesions in the brain |
Pulmonary function tests (FEV1, DLCO, and ergometry) | Assess respiratory function | Evaluates lung function to determine the patient’s ability to tolerate surgery and other treatments |
Endobronchial ultrasound-guided transbronchial needle aspiration | Accurate mediastinal staging | Provides tissue samples from mediastinal lymph nodes to assess for metastatic involvement |
Endoscopic ultrasound-guided fine-needle aspiration | Accurate mediastinal staging | Complements EBUS TBNA by providing additional tissue samples from lymph nodes for staging purposes |
Molecular profiling of tumour tissue | Guide targeted and immunotherapy treatments | Identifies actionable genetic mutations and biomarkers, informing decisions for targeted therapies and immunotherapy |
Biomarker | Histology | Associated Therapies | Details |
---|---|---|---|
EGFR mutation | Adenocarcinoma | EGFR TKIs (e.g., gefitinib, erlotinib, osimertinib) | Predicts response to EGFR tyrosine kinase inhibitors |
ALK rearrangement | Adenocarcinoma | ALK inhibitors (e.g., crizotinib, ceritinib) | Indicates potential responsiveness to ALK inhibitors |
ROS1 rearrangement | Adenocarcinoma | ROS1 inhibitors (e.g., crizotinib, entrectinib) | Like ALK rearrangements, guides use of ROS1 inhibitors for targeted treatment |
PD-L1 expression | All NSCLC | ICIs (e.g., pembrolizumab, nivolumab, atezolizumab) | High PD-L1 expression predicts response to immune checkpoint inhibitors, guiding neoadjuvant immunotherapy decisions |
Aspect | Neoadjuvant Therapy | Adjuvant Therapy |
---|---|---|
Timing | Administered before surgical resection | Administered after surgical resection |
Primary Goals | Reduces tumour size, improves operability, and eliminates micrometastases | Eliminate residual disease, prevent recurrence, and improve survival |
Benefits | Early eradication of micrometastases Potential for tumour downstaging, increasing the likelihood of complete resection Pathological response assessment provides prognostic information Intact vasculature around the tumour bed can enhance treatment efficacy | Immediate surgical intervention without delay caused by preoperative treatments Prolonged treatment duration for systemic control Allows for molecular testing during recovery to guide subsequent therapy decisions Avoids complications and toxicities associated with preoperative systemic therapy |
Challenges | Potential delays in surgery due to treatment-related toxicities or disease progression Risk of increased perioperative morbidity and technical difficulties during surgery | Benefits may vary depending on the stage at diagnosis and residual disease postsurgery May miss the opportunity for downstaging that could improve surgical outcomes |
Surrogate Endpoints | MPR and pCR can be early indicators of long-term outcomes, but definitive correlation with OS is still under investigation | DFS serves as a surrogate for OS, indicating the treatment’s effectiveness in preventing recurrence and prolonging survival |
Patient Selection | Typically considered for locally advanced (stage II–IIIA) NSCLC Requires careful evaluation of performance status, pulmonary and cardiac function, and psychosocial factors | Suitable for patients postsurgery to target residual disease Depends on surgical outcomes and pathological findings postresection |
Treatment Modality | Mechanism of Action | Role in Cancer Treatment |
---|---|---|
Immune Checkpoint Inhibitors (ICIs) | Blockade of immune checkpoints (e.g., PD-1, CTLA-4) to enhance T cell activation and proliferation | Enhances the immune response against tumours |
Chimeric Antigen Receptor (CAR) T Cell Therapy | T cells are genetically modified to express CARs that target specific tumour antigens | Directly kills cancer cells |
Cancer Vaccines | Stimulates the immune system to recognise and attack cancer cells | Prevents cancer recurrence and treats existing tumours |
Oncolytic Virus Therapy | Uses genetically modified viruses to selectively infect and kill cancer cells | Induces systemic anti-tumour immunity |
Dendritic Cell Therapy | Dendritic cells are activated and used to present tumour antigens to T cells | Enhances T cell response to cancer |
Combination Immunotherapy | Combines multiple modalities to enhance therapeutic efficacy | Synergistic effects to improve response rates |
Cytokine Therapy | Administration of cytokines (e.g., IL-2, IFN-α) to boost immune response | Enhances immune cell activity |
Trial | Intervention | MPR Rate (%) | PCR Rate (%) | Surgical Resection Rate (%) | Minimally Invasive Surgery Rate (%) | R0 Resection Rate (%) | Control Group MPR Rate (%) | Enrolled Patients’ Stages |
---|---|---|---|---|---|---|---|---|
LCMC3 | Neoadjuvant atezolizumab | 20 | 6 | 88 | 54 | 91 | 10 | Stages II–III |
NEOSTAR | Neoadjuvant nivolumab | 22 | 9 | 91 | 29 | 100 | 12 | Stages IIIA–B |
NEOSTAR | Neoadjuvant nivolumab + ipilimumab | 38 | 29 | 76 | 26 | 100 | 15 | Stages IIIA–B |
KEYNOTE-671 | Neoadjuvant pembrolizumab + chemo | 30.2 | 18.1 | 82.1 | N/A | 92 | 11 | Stages II–III |
CHECKMATE-816 | Neoadjuvant nivolumab + chemo | 37 | 24 | 83 | 29.5 | 83 | 14 | Stages IIIA–B |
AEGEAN | Neoadjuvant durvalumab + chemo | 33.3 | 17.2 | 77.6 | 39.6 | 94.7 | 13 | Stages IIIA–B |
CHECKMATE-77T | Neoadjuvant nivolumab + chemo | 35.4 | N/A | 78 | N/A | 89 | 10 | Stages IIIA–B |
NEOTORCH | Toripalimab + chemo | 48.5 | N/A | 82.2 | N/A | 95.8 | 16 | Stages IIIA–B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertolaccini, L.; Casiraghi, M.; Bardoni, C.; Diotti, C.; Chiari, M.; Mazzella, A.; de Marinis, F.; Spaggiari, L. Revamping Non-Small Cell Lung Cancer Treatments in Stages II and III: Preparing Healthcare for Cutting-Edge Immuno-Oncology Regimens. Cancers 2024, 16, 2842. https://doi.org/10.3390/cancers16162842
Bertolaccini L, Casiraghi M, Bardoni C, Diotti C, Chiari M, Mazzella A, de Marinis F, Spaggiari L. Revamping Non-Small Cell Lung Cancer Treatments in Stages II and III: Preparing Healthcare for Cutting-Edge Immuno-Oncology Regimens. Cancers. 2024; 16(16):2842. https://doi.org/10.3390/cancers16162842
Chicago/Turabian StyleBertolaccini, Luca, Monica Casiraghi, Claudia Bardoni, Cristina Diotti, Matteo Chiari, Antonio Mazzella, Filippo de Marinis, and Lorenzo Spaggiari. 2024. "Revamping Non-Small Cell Lung Cancer Treatments in Stages II and III: Preparing Healthcare for Cutting-Edge Immuno-Oncology Regimens" Cancers 16, no. 16: 2842. https://doi.org/10.3390/cancers16162842
APA StyleBertolaccini, L., Casiraghi, M., Bardoni, C., Diotti, C., Chiari, M., Mazzella, A., de Marinis, F., & Spaggiari, L. (2024). Revamping Non-Small Cell Lung Cancer Treatments in Stages II and III: Preparing Healthcare for Cutting-Edge Immuno-Oncology Regimens. Cancers, 16(16), 2842. https://doi.org/10.3390/cancers16162842