COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness
Abstract
:1. Introduction
2. Methods
3. Evaluation of Coagulopathy by Viscoelastic Methods in Severe COVID-19 Infection
4. Coagulation Disorders as Detected by VMs in Critical Illness
5. Clinical Utility of VMs in Assessment of Coagulopathy in Critically Ill COVID-19 Patients
6. Conclusions
Funding
Conflicts of Interest
References
- Joly, B.S.; Siguret, V.; Veyradier, A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020, 46, 1603–1606. [Google Scholar] [CrossRef] [PubMed]
- Danzi, G.B.; Loffi, M.; Galeazzi, G.L.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Hear. J. 2020, 41, 1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.C.A.; Meijers, J.C.M.; Vroom, M.B.; Juffermans, N.P. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: A systematic review. Crit. Care 2014, 18, R30. [Google Scholar]
- Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of Coronavirus Disease 2019. Crit. Care Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gralinski, L.E.; Bankhead, A.; Jeng, S.; Menachery, V.D.; Proll, S.; Belisle, S.E.; Matzke, M.; Webb-Robertson, B.-J.M.; Luna, M.L.; Shukla, A.K.; et al. Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury. mBio 2013, 4, e00271-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helms, J.; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis); Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Beretta, L.; Scandroglio, A.M.; Colombo, S.; Landoni, G.; Ruggeri, A.; Peccatori, J.; D’Angelo, A.; De Cobelli, F.; Rovere-Querini, P.; et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020, 22, 95–97. [Google Scholar]
- Marchandot, B.; Sattler, L.; Jesel, L.; Matsushita, K.; Schini-Kerth, V.B.; Grunebaum, L.; Morel, O. COVID-19 Related Coagulopathy: A Distinct Entity? J. Clin. Med. 2020, 9, 1651. [Google Scholar] [CrossRef]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef]
- Levi, M.; Meijers, J.C. DIC: Which laboratory tests are most useful. Blood Rev. 2011, 25, 33–37. [Google Scholar] [CrossRef]
- Mallett, S.V.; Cox, D.J. Thrombelastography. Br. J. Anaesth 1992, 69, 307–313. [Google Scholar] [CrossRef]
- Ranucci, M.; Ballotta, A.; Di Dedda, U.; Bayshnikova, E.; Poli, M.D.; Resta, M.; Falco, M.; Albano, G.; Menicanti, L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020, 18, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Spiezia, L.; Boscolo, A.; Poletto, F.; Cerruti, L.; Tiberio, I.; Campello, E.; Navalesi, P.; Simioni, P. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb. Haemost. 2020, 120, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Wright, F.L.; Vogler, T.O.; Moore, E.E.; Moore, H.B.; Wohlauer, M.V.; Urban, S.; Nydam, T.L.; Moore, P.K.; McIntyre, R.C. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J. Am. Coll. Surg. 2020, 231, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, V.; Gianesello, L.; Pazzi, M.; Stera, C.; Meconi, T.; Frigieri, F.C. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J. Thromb. Thrombolysis 2020, 20, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Mortus, J.R.; Manek, S.E.; Brubaker, L.S.; Loor, M.; Cruz, M.A.; Trautner, B.W.; Rosengart, T.K. Thromboelastographic Results and Hypercoagulability Syndrome in Patients With Coronavirus Disease 2019 Who Are Critically Ill. JAMA Netw. Open 2020, 3, e2011192. [Google Scholar] [CrossRef]
- Ibañez, C.; Perdomo, J.; Calvo, A.; Ferrando, C.; Reverter, J.C.; Tassies, D.; Blasi, A. High D dimers and low global fibrinolysis coexist in COVID19 patients: What is going on in there? J. Thromb. Thrombolysis 2020, 15, 1–5. [Google Scholar]
- Almskog, L.M.; Wikman, A.; Svensson, J.; Wanecek, M.; Bottai, M.; van der Linden, J.; Agren, A. Rotational Thromboelastometry predicts care level in Covid-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Nougier, C.; Benoit, R.; Simon, M.; Desmurs-Clavel, H.; Marcotte, G.; Argaud, L.; David, J.S.; Bonnet, A.; Negrier, C.; Dargaud, Y. Hypofibrinolytic state and high thrombin generation may play a major role in sars-cov2 associated thrombosis. J. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Blasi, A.; Von Meijenfeldt, F.A.; Adelmeijer, J.; Calvo, A.; Ibañez, C.; Perdomo, J.; Reverter, J.C.; Lisman, T. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Collett, L.W.; Gluck, S.; Strickland, R.M.; Reddi, B.J.; Michael, R. Evaluation of coagulation status using viscoelastic testing in intensive care patients with coronavirus disease 2019 (COVID-19): An observational point prevalence cohort study. Aust. Crit. Care 2020. [Google Scholar] [CrossRef] [PubMed]
- Creel-Bulos, C.; Auld, S.C.; Caridi-Scheible, M.; Barker, N.; Friend, S.; Gaddh, M.; Kempton, C.L.; Maier, C.; Nahab, F.; Sniecinski, R. Fibrinolysis Shutdown and Thrombosis in A COVID-19 ICU. Shock 2020. [Google Scholar] [CrossRef]
- Hoechter, D.; Becker-Pennrich, A.; Langrehr, J.; Bruegel, M.; Zwissler, B.; Schaefer, S.; Spannagl, M.; Hinske, L.; Zoller, M. Higher procoagulatory potential but lower DIC score in COVID-19 ARDS patients compared to non-COVID-19 ARDS patients. Thromb. Res. 2020, 196, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Brenner, T.; Schmidt, K.; Delang, M.; Mehrabi, A.; Bruckner, T.; Lichtenstern, C.; Martin, E.; Weigand, M.A.; Hofer, S. Viscoelastic and aggregometric point-of-care testing in patients with septic shock—Cross-links between inflammation and haemostasis. Acta Anaesthesiol. Scand. 2012, 56, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, S.; Mackman, N. Multiple roles of the coagulation protease cascade during virus infection. Blood 2014, 123, 2605–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, M.; De Jonge, E.; Van Der Poll, T. Sepsis and Disseminated Intravascular Coagulation. J. Thromb. Thrombolysis 2003, 16, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Daudel, F.; Kessler, U.; Folly, H.; Lienert, J.S.; Takala, J.; Jakob, S.M. Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: A prospective cohort study. Crit. Care 2009, 13, R42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrowski, S.R.; Windeløv, N.A.; Ibsen, M.; Haase, N.; Perner, A.; Johansson, P.I. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: A prospective study. J. Crit. Care 2013, 28, 317.e1–317.e11. [Google Scholar] [CrossRef]
- Adamzik, M.; Langemeier, T.; Frey, U.H.; Görlinger, K.; Saner, F.; Eggebrecht, H.; Peters, J.; Hartmann, M. Comparison of Thrombelastometry with Simplified Acute Physiology Score II and Sequential Organ Failure Assessment Scores for the Prediction of 30-Day Survival. Shock 2011, 35, 339–342. [Google Scholar] [CrossRef]
- Sivula, M.; Pettilä, V.; Niemi, T.T.; Varpula, M.; Kuitunen, A.H. Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation. Blood Coagul. Fibrinolysis 2009, 20, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Giallouros, G.; Konstantinidi, A.; Pantavou, K.; Nikolopoulos, G.K.; Bonovas, S.; Lytras, T.; Kyriakou, E.; Lambadaridis, I.; Gounaris, A.; et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: An observational study. Eur. J. Nucl. Med. Mol. Imaging 2017, 177, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Grant, H.W.; Hadley, G.P. Prediction of neonatal sepsis by thromboelastography. Pediatr. Surg. Int. 1997, 12, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Revel-Vilk, S. The conundrum of neonatal coagulopathy. Hematol. Am. Soc. Hematol. Educ. Program 2012, 2012, 450–454. [Google Scholar] [CrossRef]
- Adamzik, M.; Eggmann, M.; Frey, U.H.; Görlinger, K.; Brocker-PreuSZ, M.; Marggraf, G.; Saner, F.H.; Eggebrecht, H.; Peters, J.; Hartmann, M. Comparison of thrombelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critical ill adults. Crit. Care 2010, 14, R178. [Google Scholar] [CrossRef] [Green Version]
- Panigada, M.; Zacchetti, L.; L’Acqua, C.; Cressoni, M.; Anzoletti, M.B.; Bader, R.; Protti, A.; Consonni, D.; D’Angelo, A.; Gattinoni, L. Assessment of Fibrinolysis in Sepsis Patients with Urokinase Modified Thromboelastography. PLoS ONE 2015, 10, e0136463. [Google Scholar] [CrossRef] [Green Version]
- Lampridou, M.; Sokou, R.; Tsantes, A.G.; Theodoraki, M.; Konstantinidi, A.; Ioakeimidis, G.; Bonovas, S.; Politou, M.; Valsami, S.; Iliodromiti, Z.; et al. ROTEM diagnostic capacity for measuring fibrinolysis in neonatal sepsis. Thromb. Res. 2020, 192, 103–108. [Google Scholar] [CrossRef]
- Raza, I.; Davenport, R.; Rourke, C.; Platton, S.; Manson, J.; Spoors, C.; Khan, S.; De’Ath, H.D.; Allard, S.; Hart, D.P.; et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J. Thromb. Haemost. 2013, 11, 307–314. [Google Scholar] [CrossRef]
- Levrat, A.; Gros, A.; Rugeri, L.; Inaba, K.; Floccard, B.; Negrier, C.; David, J.-S. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br. J. Anaesth. 2008, 100, 792–797. [Google Scholar] [CrossRef] [Green Version]
- Moore, H.B.; Moore, E.E.; Liras, I.N.; Gonzalez, E.; Harvin, J.A.; Holcomb, J.B.; Sauaia, A.; Cotton, B.A. Acute Fibrinolysis Shutdown after Injury Occurs Frequently and Increases Mortality: A Multicenter Evaluation of 2540 Severely Injured Patients. J. Am. Coll. Surg. 2016, 222, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Longstaff, C. Measuring fibrinolysis: From research to routine diagnostic assays. J. Thromb. Haemost. 2018, 16, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Görlinger, K.; Perez-Ferrer, A.; Dirkmann, D.; Saner, F.H.; Maegele, M.; Pérez-Calatayud, Á.A.; Kim, T.-Y. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J. Anesthesiol. 2019, 72, 297–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Patients (n) | Viscoelastic Assay | Variables | Controls | Findings | Treatment | Clinical Outcome |
---|---|---|---|---|---|---|---|
Ranucci et al., 2020 [12] | COVID 19 ICU ARDS (16) | STA-NeoPTimal (ultrasound-based technology) | CoT, CS, FCS, PCS | The upper limit of the normal reference ranges | Procoagulant profile | Τhromboprophylaxis | No major VTE |
Ranucci et al., 2020 [12] | COVID 19 ICU ARDS (10) | STA-NeoPTimal (ultrasound-based technology) | CoT, CS, FCS, PCS | Progression toward normalization | Increased thromboprophylaxis | ||
Panigada et al., 2020 [13] | COVID-19 ICU (24) | TEG | R, K, K angle, MA, Lys-30 | Reference ranges, previously established in 40 healthy adult subjects | Hypercoagulability, hyperfibrinolysis | Thromboprophylaxis | 23% developed in-hospital VTE |
Spiezia et al., 2020 [14] | COVID-19 ICU ARDS (22) | ROTEM (EXTEM, INTEM, FIBTEM) | CT, CFT, MCF, ML | 44 healthy subjects | Hypercoagulability | Thromboprophylaxis | Patients with fibrinolysis shutdown had a 40% rate of VTE compared to 5% in patients without shutdown |
Wright et al., 2020 [15] | COVID-19 ICU (44) | TEG/TEG heparinase | R, K, K angle, MA, Lys-30 | Reference ranges | Hypercoagulability, fibrinolysis shutdown | Thromboprophylaxis | |
Pavoni et al., 2020 [16] | COVID-19 ICU, severe pneumonia (40) | ROTEM (EXTEM, INTEM, FIBTEM) | CT, CFT, MCF, ML | Reference ranges | Hypercoagulability | Thromboprophylaxis | 50% developed thrombotic event |
Mortus et al., 2020 [17] | COVID-19 ICU (21) | TEG /TEG heparinase | R, K, K angle, MA, Lys-30 | Reference ranges | Hypercoagulability | Thromboprophylaxis or therapeutic anticoagulation | 62% developed thrombotic events. MA was significantly greaterfor the high thrombotic event rate group than the low event rate group. |
Ibanez et al., 2020 [18] | COVID-19 ICU (19) | ROTEM (EXTEM, INTEM, FIBTEM) | CT, CFT, MCF, LI30, LI60 | Reference ranges | Hypercoagulability, hypofibrinolysis | Thromboprophylaxis | 26% had thrombotic complications, 10% had bleeding |
Almskog et al., 2020 [19] | COVID-19 mild (40) and severe pneumonia (20) | ROTEM (EXTEM, FIBTEM) | CT, CFT, MCF. | 89 healthy individuals from a previously published study | Hypercoagulability in hospitalized patients with mild to severe COVID-19 pneumonia compared with healthy controls | Low prophylactic dose; High prophylactic dose; Treatment dose | |
Nougier et al., 2020 [20] | COVID-19 ICU (19), COVID-19 mild infection (4) | tPA-modified ROTEM | MCF, an angle, LI30 | 10 healthy volunteers | Hypercoagulability and hypofibrinolysis in COVID-19 patients with thrombosis. | Thromboprophylaxis | COVID-19 ICU patients had 12.5% thrombotic complications |
Blasi et al., 2020 [21] | COVID-19 ICU (12), COVID-19 mild infection, (11) | ROTEM (EXTEM, INTEM, FIBTEM) | CT, MCF, LI60 | Reference ranges | Hypercoagulability in part of the patients | Normal to intensified anticoagulant therapy | Three COVID-19 ICU patients had thrombotic complications: |
Collett et al., 2020 [22] | COVID-19 ICU (6) | ROTEM (EXTEM, INTEM, FIBTEM) | A10, CFT, MCF, ML | Reference ranges | Hypercoagulability with minimal fibrinolysis | Thromboprophylaxis | Three patients developed VTE |
Creel-Bulos et al., 2020 [23] | COVID-19 ICU (21) | ROTEM (EXTEM, FIBTEM) | CT, MCF, ML | Reference ranges | Fibrinolysis shutdown | Thromboprophylaxis | Nine patients (42.9%) had VTE. 73% (n = 8) were diagnosed with fibrinolytic shutdown |
Hoechter et al., 2020 [24] | COVID-19 ICU (11), Non-COVID-19 ICU (14) | ROTEM (EXTEM, FIBTEM) | CT, CFT, MCF, ML | Reference ranges | COVID-19 patients presented with higher coagulatory potential | Thromboprophylaxis |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsantes, A.E.; Tsantes, A.G.; Kokoris, S.I.; Bonovas, S.; Frantzeskaki, F.; Tsangaris, I.; Kopterides, P. COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness. Diagnostics 2020, 10, 817. https://doi.org/10.3390/diagnostics10100817
Tsantes AE, Tsantes AG, Kokoris SI, Bonovas S, Frantzeskaki F, Tsangaris I, Kopterides P. COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness. Diagnostics. 2020; 10(10):817. https://doi.org/10.3390/diagnostics10100817
Chicago/Turabian StyleTsantes, Argirios E., Andreas G. Tsantes, Styliani I. Kokoris, Stefanos Bonovas, Frantzeska Frantzeskaki, Iraklis Tsangaris, and Petros Kopterides. 2020. "COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness" Diagnostics 10, no. 10: 817. https://doi.org/10.3390/diagnostics10100817
APA StyleTsantes, A. E., Tsantes, A. G., Kokoris, S. I., Bonovas, S., Frantzeskaki, F., Tsangaris, I., & Kopterides, P. (2020). COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness. Diagnostics, 10(10), 817. https://doi.org/10.3390/diagnostics10100817