On Playing with Emotion: A Spatial Evolutionary Variation of the Ultimatum Game
Abstract
:1. Introduction
2. The Model
- Anger: and (an angry agent offers little and only accepts high shares [30]);
- Fear: and (a fearful agent makes generous proposals and accepts any offer [29]);
- Joy: is a random number and . (Here, a joyful agent makes unpredictable offers averaging around 50% and rationally takes any amount. As about 50% of the unfair offers are rejected [14] and sad individuals tend to decline unfair offers [26], it is assumed that the remaining 50% of accepted unfair offers are accepted by non-sad individuals. In fact, joyful negotiators tend to be more cooperative [28]);
- Surprise: is a random number and any offer is either accepted or rejected with a 50%/50% chance (a surprising agent makes unpredictable proposals and the acceptance/rejection is arbitrary and independent of the offered percentage).
3. Metrics
4. Numerical Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darwin, C. The Expression of the Emotions in Man and Animals; D. Appleton and Company: New York, NY, USA, 1897. [Google Scholar]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Nesse, R.M.; Ellsworth, P.C. Evolution, emotions, and emotional disorders. Am. Psychol. 2009, 64, 129. [Google Scholar] [CrossRef]
- Plutchik, R. The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 2001, 89, 344. [Google Scholar] [CrossRef]
- Ekman, P.; Cordaro, D. What is meant by calling emotions basic. Emotion Rev. 2011, 3, 364. [Google Scholar] [CrossRef]
- Levenson, R.W. Basic emotion questions. Emotion Rev. 2011, 3, 379. [Google Scholar] [CrossRef]
- Rabin, M. Incorporating fairness into game theory and economics. Am. Econ. Rev. 1993, 83, 1281. [Google Scholar]
- Henrich, J.; Boyd, R.; Bowles, S.; Camerer, C.; Fehr, E.; Gintis, H.; McElreath, R.; Alvard, M.; Barr, A.; Ensminger, J.; et al. “Economic man” in cross-cultural perspective: Behavioral experiments in 15 small-scale societies. Behav. Brain Sci. 2005, 28, 795. [Google Scholar] [CrossRef]
- Olekalns, M.; Druckman, D. With feeling: How emotions shape negotiation. Negot. J. 2014, 30, 455. [Google Scholar] [CrossRef]
- Cambria, E. Affective computing and sentiment analysis. IEEE Intell. Syst. 2016, 31, 102. [Google Scholar] [CrossRef]
- Van Dijk, E.; De Dreu, C.K.W. Experimental games and social decision making. Annu. Rev. Psychol. 2021, 72, 415. [Google Scholar] [CrossRef]
- Güth, W.; Schmittberger, R.; Schwarze, B. An experimental analysis of ultimatum bargaining. J. Econ. Behav. Organ. 1982, 3, 367. [Google Scholar] [CrossRef]
- Oosterbeek, H.; Sloof, R.; van de Kuilen, G. Cultural differences in ultimatum game experiments: Evidence from a meta-analysis. Exp. Econ. 2004, 7, 171. [Google Scholar] [CrossRef]
- Güth, W.; Kocher, M.G. More than thirty years of ultimatum bargaining experiments: Motives, variations, and a survey of the recent literature. J. Econ. Behav. Organ. 2014, 108, 396. [Google Scholar] [CrossRef]
- Debove, S.; Baumard, N.; André, J.B. Models of the evolution of fairness in the ultimatum game: A review and classification. Evol. Hum. Behav. 2016, 37, 245. [Google Scholar] [CrossRef]
- Arvanitis, A.; Papadatou-Pastou, M.; Hantzi, A. Agreement in the ultimatum game: An analysis of interpersonal and intergroup context on the basis of the consensualistic approach to negotiation. New Ideas Psychol. 2019, 54, 15. [Google Scholar] [CrossRef]
- Harsanyi, J.C. On the rationality postulates underlying the theory of cooperative games. J. Confl. Resolut. 1961, 5, 179. [Google Scholar] [CrossRef]
- Schecter, S.; Gintis, H. Game Theory in Action: An Introduction to Classical and Evolutionary Models; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Sanfey, A.G.; Rilling, J.K.; Aronson, J.A.; Nystrom, L.E.; Cohen, J.D. The neural basis of economic decision-making in the Ultimatum Game. Science 2003, 300, 1755. [Google Scholar] [CrossRef] [PubMed]
- Gabay, A.S.; Radua, J.; Kempton, M.J.; Mehta, M.A. The Ultimatum Game and the brain: A meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 2014, 47, 549. [Google Scholar] [CrossRef] [PubMed]
- Sanfey, A.G.; Chang, L.J. Multiple systems in decision making. Ann. N. Y. Acad. Sci. 2008, 1128, 53. [Google Scholar] [CrossRef]
- Tabibnia, G.; Lieberman, M.D. Fairness and cooperation are rewarding: Evidence from social cognitive neuroscience. Ann. N. Y. Acad. Sci. 2007, 1118, 90. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.B.V.; Monteiro, L.H.A. A spatial evolutionary version of the ultimatum game as a toy model of income distribution. Commun. Nonlinear Sci. Numer. Simulat. 2019, 76, 132. [Google Scholar] [CrossRef]
- Cosmides, L.; Tooby, J. Evolutionary psychology: New perspectives on cognition and motivation. Annu. Rev. Psychol. 2013, 64, 201. [Google Scholar] [CrossRef] [PubMed]
- Clempner, J.B. Shaping emotions in negotiation: A Nash bargaining solution. Cognit. Comput. 2020, 12, 720. [Google Scholar] [CrossRef]
- Harlé, K.M.; Sanfey, A.G. Incidental sadness biases social economic decisions in the Ultimatum Game. Emotion 2007, 7, 876. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, A. Predicting strategic decisions based on emotional signals. Cybern. Syst. 2021, 52, 670. [Google Scholar] [CrossRef]
- Carnevale, P.J. Positive affect and decision frame in negotiation. Group Decis. Negot. 2008, 17, 51. [Google Scholar] [CrossRef]
- Achtziger, A.; Alós-Ferrer, C.; Wagner, A.K. The impact of self-control depletion on social preferences in the ultimatum game. J. Econ. Psychol. 2016, 53, 1. [Google Scholar] [CrossRef]
- Pietroni, D.; Hughes Verdi, S.; Giuliani, F.; Rosa, A.; Missier, F.D.; Palumbo, R. The interpersonal effects of emotion on rejection of severely unfair ultimatum proposal. Int. J. Confl. Manag. 2022, 33, 1. [Google Scholar] [CrossRef]
- Nowak, M.A.; Page, K.M.; Sigmund, S. Fairness versus reason in the Ultimatum Game. Science 2000, 289, 1773. [Google Scholar] [CrossRef]
- Page, K.M.; Nowak, M.A.; Sigmund, K. The spatial ultimatum game. Proc. R. Soc. Lond. B 2000, 267, 2177. [Google Scholar] [CrossRef]
- Iranzo, J.; Román, J.; Sánchez, A. The spatial ultimatum game revisited. J. Theor. Biol. 2011, 278, 1. [Google Scholar] [CrossRef] [PubMed]
- Szolnoki, A.; Perc, M.; Szabó, G. Defense mechanisms of empathetic players in the spatial ultimatum game. Phys. Rev. Lett. 2012, 109, 078701. [Google Scholar] [CrossRef] [PubMed]
- Rand, D.G.; Tarnita, C.E.; Ohtsuki, H.; Nowak, M.A. Evolution of fairness in the one-shot anonymous Ultimatum Game. Proc. Natl. Acad. Sci. USA 2013, 110, 2581. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Okamoto, T.; Arita, T. Emergent dynamics of fairness in the spatial coevolution of proposer and responder species in the ultimatum game. PLoS ONE 2015, 10, e0116901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Yang, S.; Chen, X.J.; Bai, Y.B.; Xie, G.M. Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game. Chaos Solit. Fractals 2023, 169, 113218. [Google Scholar] [CrossRef]
- Bourgais, M.; Taillandier, P.; Vercouter, L.; Adam, C. Emotion modeling in social simulation: A survey. J. Artif. Soc. Soc. Simul. 2018, 21, 5. [Google Scholar] [CrossRef]
- Quang, L.A.; Jung, N.; Cho, E.S.; Choi, J.H.; Lee, J.W. Agent-based models in social physics. J. Korean Phys. Soc. 2018, 72, 1272. [Google Scholar] [CrossRef]
- DeAngelis, D.L.; Diaz, S.G. Decision-making in agent-based modeling: A current review and future prospectus. Front. Ecol. Evol. 2019, 6, 237. [Google Scholar] [CrossRef]
- Huang, J.Y.; Cui, Y.K.; Zhang, L.L.; Tong, W.P.; Shi, Y.Y.; Liu, Z.Y. An overview of agent-based models for transport simulation and analysis. J. Adv. Transp. 2022, 2022, 1252534. [Google Scholar] [CrossRef]
- Nugroho, S.; Uehara, T. Systematic review of agent-based and system dynamics models for social-ecological system case studies. Systems 2023, 11, 530. [Google Scholar] [CrossRef]
- Fan, R.; Xu, K.; Zhao, J.C. An agent-based model for emotion contagion and competition in online social media. Physica A 2018, 495, 245. [Google Scholar] [CrossRef]
- Schweitzer, F.; Krivachy, T.; Garcia, D. An agent-based model of opinion polarization driven by emotions. Complexity 2020, 2020, 5282035. [Google Scholar] [CrossRef]
- Salgado, M.; Clempner, J.B. Measuring the emotional state among interacting agents: A game theory approach using reinforcement learning. Expert Syst. Appl. 2018, 97, 266. [Google Scholar] [CrossRef]
- Wolfram, S. Cellular Automata and Complexity: Collected Papers; Westview Press: Boulder, CO, USA, 1994. [Google Scholar]
- Nowak, M.A.; May, R.M. Evolutionary chaos and spatial games. Nature 1992, 359, 826. [Google Scholar] [CrossRef]
- Liu, Y.D.; Zheng, T.N.; Li, Y.H.; Dai, Y. Does the conformity save us when information advantage fails? Phys. A 2020, 549, 124499. [Google Scholar] [CrossRef]
- Rocha, A.C.; Monteiro, L.H.A. On the spread of charitable behavior in a social network: A model based on game theory. Netw. Heterog. Media 2023, 18, 842. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Chicago, IL, USA, 1998. [Google Scholar]
- Sato, N. Scientific élan vital: Entropy deficit or inhomogeneity as a unified concept of driving forces of life in hierarchical biosphere driven by photosynthesis. Entropy 2012, 14, 233. [Google Scholar] [CrossRef]
- Landsberg, P.T. Can entropy and “order” increase together? Phys. Lett. A 1984, 102, 171. [Google Scholar] [CrossRef]
- Shiner, J.S.; Davison, M.; Landsberg, P.T. Simple measure for complexity. Phys. Rev. E 1999, 59, 1459. [Google Scholar] [CrossRef]
- Piqueira, J.R.C.; Serboncini, F.A.; Monteiro, L.H.A. Biological models: Measuring variability with classical and quantum information. J. Theor. Biol. 2006, 242, 309. [Google Scholar] [CrossRef]
- Gao, J.B.; Liu, F.Y.; Zhang, J.F.; Hu, J.; Cao, Y.H. Information entropy as a basic building block of complexity theory. Entropy 2013, 15, 3396. [Google Scholar] [CrossRef]
- Omar, Y.M.; Plapper, P. A survey of information entropy metrics for complex networks. Entropy 2020, 22, 1417. [Google Scholar] [CrossRef] [PubMed]
- Sabirov, D.S.; Shepelevich, I.S. Information entropy in chemistry: An overview. Entropy 2021, 23, 1240. [Google Scholar] [CrossRef] [PubMed]
- Rainville, P.; Bechara, A.; Naqvi, N.; Damasio, A.R. Basic emotions are associated with distinct patterns of cardiorespiratory activity. Int. J. Psychophysiol. 2006, 61, 5. [Google Scholar] [CrossRef] [PubMed]
- Moharreri, S.; Dabanloo, N.J.; Maghooli, K. Modeling the 2D space of emotions based on the Poincare plot of heart rate variability signal. Biocybern. Biomed. Eng. 2018, 38, 794. [Google Scholar] [CrossRef]
- Costa, T.; Cauda, F.; Crini, M.; Tatu, M.K.; Celeghin, A.; de Gelder, B.; Tamietto, M. Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Soc. Cogn. Affect. Neurosci. 2014, 9, 1690. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, T.; Cowen, A.S.; Keltner, D.; Kamitani, Y. The neural representation of visually evoked emotion is high-dimensional, categorical, and distributed across transmodal brain regions. iScience 2020, 23, 101060. [Google Scholar] [CrossRef]
- Sander, D.; Grafman, J.; Zalla, T. The human amygdala: An evolved system for relevance detection. Rev. Neurosci. 2003, 14, 303. [Google Scholar] [CrossRef]
- Perry, C.J.; Baciadonna, L. Studying emotion in invertebrates: What has been done, what can be measured and what they can provide. J. Exp. Biol. 2017, 220, 3856. [Google Scholar] [CrossRef]
- Binmore, K. Bargaining and fairness. Proc. Natl. Acad. Sci. USA 2014, 111, 10785. [Google Scholar] [CrossRef]
- Falk, A.; Fischbacher, U. A theory of reciprocity. Games Econ. Behav. 2006, 54, 293. [Google Scholar] [CrossRef]
• for = {anger, fear, joy, sadness} | |||
if | if | ||
if | (0, 0) | payoff | |
life | |||
• for = {surprise} | |||
50% chance | 50% chance | ||
if | (0, 0) | payoff | |
life |
Emotion | |||
---|---|---|---|
anger | |||
fear | |||
joy | |||
sadness | |||
surprise |
Emotion | |||
---|---|---|---|
anger | |||
fear | |||
joy | |||
sadness | |||
surprise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charcon, D.Y.; Monteiro, L.H.A. On Playing with Emotion: A Spatial Evolutionary Variation of the Ultimatum Game. Entropy 2024, 26, 204. https://doi.org/10.3390/e26030204
Charcon DY, Monteiro LHA. On Playing with Emotion: A Spatial Evolutionary Variation of the Ultimatum Game. Entropy. 2024; 26(3):204. https://doi.org/10.3390/e26030204
Chicago/Turabian StyleCharcon, D. Y., and L. H. A. Monteiro. 2024. "On Playing with Emotion: A Spatial Evolutionary Variation of the Ultimatum Game" Entropy 26, no. 3: 204. https://doi.org/10.3390/e26030204