Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective
Abstract
:1. Introduction
2. Strategies for Preventing Dental Caries
3. Honey—Its Composition and Antibacterial/Antibiofilm Properties
3.1. Antibacterial Effect of Honey against Oral Pathogens
3.2. Antibiofilm Effect of Honey against Oral Pathogens
4. Honey in the Cariogenic Process
5. Clinical Evidence of Honey in the Prevention of Dental Caries
6. Honey Quality Matters
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W. GBD 2015 Oral Health Collaborators, Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [PubMed]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Escapa, I.F.; Chen, T.; Huang, Y.; Gajare, P.; Dewhirst, F.E.; Lemon, K.P. New insights into human nostril microbiome from the expanded Human Oral Microbiome Database (eHOMD): A resource for the microbiome of the human aerodigestive tract. mSystems 2018, 3, e00187-18. [Google Scholar] [CrossRef]
- Simón-Soro, A.; Mira, A. Solving the etiology of dental caries. Trends Microbiol. 2015, 23, 76–82. [Google Scholar] [CrossRef]
- Mark Welch, J.L.; Rossetti, B.J.; Rieken, C.W.; Dewhirst, F.E.; Borisy, G.G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA 2016, 113, E791–E800. [Google Scholar] [CrossRef]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef]
- Staufenbiel, I.; Adam, K.; Deac, A.; Geurtsen, W.; Günay, H. Influence of fruit consumption and fluoride application on the prevalence of caries and erosion in vegetarians—A controlled clinical trial. Eur. J. Clin. Nutr. 2015, 69, 1156–1160. [Google Scholar] [CrossRef]
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global burden and inequality of dental caries, 1999 to 2019. J. Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef]
- World Health Organization. Prevention and Treatment of Dental Caries with Mercury-Free Products and Minimal Intervention: WHO Oral Health Briefing Note Series; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Worthington, H.V.; MacDonald, L.; Pericic, T.P.; Sambunjak, D.; Johnson, T.M.; Imai, P.; Clarkson, J.E. Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries. Cochrane Database Syst. Rev. 2019, 4, CD012018. [Google Scholar] [CrossRef]
- Takenaka, S.; Ohsumi, T.; Noiri, Y. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Jpn. Dent. Sci. Rev 2019, 55, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Acquired resistance to chlorhexidine—Is it time to establish an ’antiseptic stewardship’ initiative? J. Hosp. Infect. 2016, 94, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Pałka, Ł.; Nowakowska-Toporowska, A.; Dalewski, B. Is chlorhexidine in dentistry an ally or a foe? a narrative review. Healthcare 2022, 10, 764. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Alhajj, M.N.; Deshisha, E.A.; Alshafei, A.K.; Ahmed, A.I.; Almudayfi, N.O.; Alshammari, S.A.; Alsharif, A.; Kassim, S. Curcumin mouthwashes versus chlorhexidine in controlling plaque and gingivitis: A systematic review and meta-analysis. Int. J. Dent. Hyg. 2022, 20, 53–61. [Google Scholar] [CrossRef]
- Codex Stan 12-1981; Codex Alimentarius, Codex Standards for Honey. FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001.
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on manuka honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Majtan, J.; Bucekova, M.; Kafantaris, I.; Szweda, P.; Hammer, K.; Mossialos, D. Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci. Technol. 2021, 118, 870–886. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Cox, J.A. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Valachova, I.; Bucekova, M.; Majtan, J. Quantification of bee-derived defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech J. Food Sci. 2016, 34, 233–243. [Google Scholar]
- Joe, T.; Jeong, E.; Yoo, G.; Ahn, S.; Rhee, H.I.; Lee, D.C. The monoclonal antibody for discrimination of natural honey against artificial honey. Food Sci. Nutr. 2018, 6, 2350–2354. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Ying, M.; Zhang, J.; Cui, Z.; Chen, Q.; Chen, Y.; Wang, J.; Fang, F.; Shen, L. Quantification of major royal jelly proteins using ultra performance liquid chromatography tandem triple quadrupole mass spectrometry and application in honey authenticity. J. Food Compos. Anal. 2021, 97, 103801. [Google Scholar] [CrossRef]
- Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483–489. [Google Scholar] [CrossRef]
- Adams, C.J.; Manley-Harris, M.; Molan, P.C. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 2009, 344, 1050–1053. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, K. A current perspective on hydrogen peroxide production in honey. A review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef] [PubMed]
- de Graft-Johnson, J.; Nowak, D. Effect of selected plant phenolics on Fe2+-EDTA-H₂O₂ system mediated deoxyribose oxidation: Molecular structure-derived relationships of anti- and pro-oxidant actions. Molecules 2017, 22, 59. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Wang, Y.; Li, T.; Zhao, J.; Zhang, C. Green tea polyphenols function as prooxidants to inhibit Pseudomonas aeruginosa and induce the expression of oxidative stress-related genes. Folia Microbiol. 2013, 58, 211–217. [Google Scholar] [CrossRef]
- Brudzynski, K.; Sjaarda, C.; Lannigan, R. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates. Front. Microbiol. 2015, 16, 711. [Google Scholar] [CrossRef]
- Brudzynski, K.; Sjaarda, C. Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. PLoS ONE 2015, 10, e0120238. [Google Scholar] [CrossRef] [Green Version]
- Bucekova, M.; Majtan, J. The MRJP1 honey glycoprotein does not contribute to the overall antibacterial activity of natural honey. Eur. Food Res. Technol. 2016, 242, 625–629. [Google Scholar] [CrossRef]
- Kwakman, P.H.; te Velde, A.A.; De Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.; Zaat, S.A. How honey kills bacteria. FASEB J. 2010, 24, 2576–2582. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Liu, D.; Li, M.; Jin, F.; Din, M.; Parnell, L.D.; Lai, C.Q. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria. PLoS ONE 2012, 7, e47194. [Google Scholar] [CrossRef] [PubMed]
- Bílikova, K.; Huang, S.C.; Lin, I.P.; Šimuth, J.; Peng, C.C. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides 2015, 68, 90–96. [Google Scholar] [CrossRef]
- Fujiwara, S.; Imai, J.; Fujiwara, M.; Yaeshima, T.; Kawashima, T.; Kobayashi, K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 1990, 265, 11333–11337. [Google Scholar] [CrossRef]
- White, J.W.; Subers, M.H.; Schepartz, A.I. The identification of inhibine, the antibacterial factor in honey, as hydrogenperoxide and its origin in a honey glucose-oxidase system. Biochim. Biophys. Acta 1963, 73, 57–70. [Google Scholar] [CrossRef]
- Brudzynski, K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can. J. Microbiol. 2006, 52, 1228–1237. [Google Scholar] [CrossRef]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial activity of different blossom honeys: New findings. Molecules 2019, 24, E1573. [Google Scholar] [CrossRef]
- Masoura, M.; Passaretti, P.; Overton, T.W.; Lund, P.A.; Gkatzionis, K. Use of a model to understand the synergies underlying the antibacterial mechanism of H2O2-producing honeys. Sci. Rep. 2020, 10, 17692. [Google Scholar] [CrossRef]
- Bhandary, S.; Chaki, S.; Mukherjee, S.; Das, S.; Mukherjee, S.; Chaudhuri, K.; Dastidar, S.G. Degradation of bacterial DNA by a natural antimicrobial agent with the help of biomimetic membrane system. Indian J. Exp. Biol. 2012, 50, 491–496. [Google Scholar]
- Hayashi, K.; Fukushima, A.; Hayashi-Nishino, M.; Nishino, K. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa. Front. Microbiol. 2014, 5, 180. [Google Scholar] [CrossRef] [PubMed]
- Bouzo, D.; Cokcetin, N.N.; Li, L.; Ballerin, G.; Bottomley, A.L.; Lazenby, J.; Whitchurch, C.B.; Paulsen, I.T.; Hassan, K.A.; Harry, E.J. Characterizing the mechanism of action of an ancient antimicrobial, manuka honey, against Pseudomonas aeruginosa using modern transcriptomics. mSystems 2020, 5, e00106-20. [Google Scholar] [CrossRef] [PubMed]
- Hbibi, A.; Sikkou, K.; Khedid, K.; El Hamzaoui, S.; Bouziane, A.; Benazza, D. Antimicrobial activity of honey in periodontal disease: A systematic review. J. Antimicrob. Chemother. 2020, 75, 807–826. [Google Scholar] [CrossRef]
- Cooper, R.A.; Molan, P.C.; Harding, K.G. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef]
- Maddocks, S.E.; Lopez, M.S.; Rowlands, R.S.; Cooper, R.A. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology 2012, 158, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Safii, S.H.; Tompkins, G.R.; Duncan, W.J. Periodontal application of manuka honey: Antimicrobial and demineralising effects in vitro. Int. J. Dent. 2017, 2017, 9874535. [Google Scholar] [CrossRef] [PubMed]
- Habluetzel, A.; Schmid, C.; Carvalho, T.S.; Lussi, A.; Eick, S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci. Rep. 2018, 8, 10936. [Google Scholar] [CrossRef]
- Nassar, H.M.; Li, M.; Gregory, R.L. Effect of honey on Streptococcus mutans growth and biofilm formation. Appl. Environ. Microbiol. 2012, 78, 536–540. [Google Scholar] [CrossRef]
- Patel, H.R.; Krishnan, C.A.; Thanveer, K. Antimicrobial effect of honey on Streptococcus mutans—An in vitro study. Int. J. Dent. Sci. Res. 2013, 1, 46–49. [Google Scholar] [CrossRef]
- Voidarou, C.; Antoniadou, M.; Rozos, G.; Alexopoulos, A.; Giorgi, E.; Tzora, A.; Skoufos, I.; Varzakas, T.; Bezirtzoglou, E. An in vitro study of different types of Greek honey as potential natural antimicrobials against dental caries and other oral pathogenic microorganisms. Case study simulation of oral cavity conditions. Appl. Sci. 2021, 11, 6318. [Google Scholar] [CrossRef]
- Schuh, C.; Aguayo, S.; Zavala, G.; Khoury, M. Exosome-like vesicles in Apis mellifera bee pollen, honey and royal jelly contribute to their antibacterial and pro-regenerative activity. J. Exp. Biol. 2019, 222, jeb208702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiva-Sabadini, C.; Alvarez, S.; Barrera, N.P.; Schuh, C.M.; Aguayo, S. Antibacterial effect of honey-derived exosomes containing antimicrobial peptides against oral Streptococci. Int. J. Nanomed. 2021, 16, 4891. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Ding, M.; Zhang, L.; Jin, F.; Zhang, W.; Li, D. Expression of Acc-Royalisin gene from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity. J. Agric. Food Chem. 2010, 58, 2266–2273. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.; Roy, S.; McDonald, D. Exploration of the antimicrobial synergy between selected natural substances on Streptococcus mutans to identify candidates for the control of dental caries. Microbiol. Spectr. 2022, 10, e0235721. [Google Scholar] [CrossRef]
- Sateriale, D.; Facchiano, S.; Colicchio, R.; Pagliuca, C.; Varricchio, E.; Paolucci, M.; Volpe, M.G.; Salvatore, P.; Pagliarulo, C. In vitro synergy of polyphenolic extracts from honey, myrtle and pomegranate against oral pathogens, S. mutans and R. dentocariosa. Front. Microbiol. 2020, 11, 1465. [Google Scholar] [CrossRef]
- Hernández, P.; Sánchez, M.C.; Llama-Palacios, A.; Ciudad, M.J.; Collado, L. Strategies to combat caries by maintaining the integrity of biofilm and homeostasis during the rapid phase of supragingival plaque formation. Antibiotics 2022, 11, 800. [Google Scholar] [CrossRef]
- Krishnakumar, G.S.; Mahendiran, B.; Gopalakrishnan, S.; Muthusamy, S.; Elangovan, S.M. Honey based treatment strategies for infected wounds and burns: A systematic review of recent pre-clinical research. Wound Med. 2020, 30, 100188. [Google Scholar] [CrossRef]
- Manniello, M.D.; Moretta, A.; Salvia, R.; Scieuzo, C.; Lucchetti, D.; Vogel, H.; Sgambato, A.; Falabella, P. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021, 78, 4259–4282. [Google Scholar] [CrossRef]
- Proano, A.; Coello, D.; Villacrés-Granda, I.; Ballesteros, I.; Debut, A.; Vizuete, K.; Brenciani, A.; Alvarez-Suarez, J.M. The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. LWT-Food Sci. Technol. 2021, 136, 110379. [Google Scholar] [CrossRef]
- Sojka, M.; Valachova, I.; Bucekova, M.; Majtan, J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J. Med. Microbiol. 2016, 65, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.; Schäfer, G.; Kwieciński, J.; Atrott, J.; Henle, T.; Pfister, W. Honey—A potential agent against Porphyromonas gingivalis: An in vitro study. BMC Oral Health 2014, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Grobler, S.R.; du Toit, I.J.; Basson, N.J. The effect of honey on human tooth enamel in vitro observed by electron microscopy and microhardness measurements. Arch. Oral Biol. 1994, 39, 147–153. [Google Scholar] [CrossRef]
- Featherstone, J.D. Dental caries: A dynamic disease process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef]
- Razdan, T.R.; Singh, V.P.; Rav, A.B.; Harihara, M.; Sreeram, S.R. Comparative evaluation of enamel demineralization depth by five sweeteners: An in vitro study. J. Int. Oral Health 2016, 8, 709. [Google Scholar]
- Ahmadi-Motamayel, F.; Rezaei-Soufi, L.; Kiani, L.; Alikhani, M.Y.; Poorolajal, J.; Moghadam, M. Effects of honey, glucose, and fructose on the enamel demineralization depth. J. Dent.Sci. 2013, 8, 147–150. [Google Scholar] [CrossRef]
- Cury, J.A.; Rebeio, M.A.; Del Bel Cury, A.A.; Derbyshire, M.T.; Tabchoury, C.P. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 2000, 34, 491–497. [Google Scholar] [CrossRef]
- Celik, Z.C.; Yavlal, G.O.; Yanıkoglu, F.; Kargul, B.; Tagtekin, D.; Stookey, G.K.; Peker, S.; Hayran, O. Do ginger extract, natural honey and bitter chocolate remineralize enamel surface as fluoride toothpastes? An in-vitro study. Niger. J. Clin. Pract. 2021, 24, 1283–1288. [Google Scholar]
- Senthilkumar, V.; Ramesh, S. Remineralisation potential of grape seed, ginger honey-an in vitro study. Int. J. Dent. Oral Sci. 2021, 8, 1739–1743. [Google Scholar]
- Khatami, S.H.; Vakili, O.; Ahmadi, N.; Soltani Fard, E.; Mousavi, P.; Khalvati, B.; Maleksabet, A.; Savardashtaki, A.; Taheri-Anganeh, M.; Movahedpour, A. Glucose oxidase: Applications, sources, and recombinant production. Biotechnol. Appl. Biochem. 2022, 69, 939–950. [Google Scholar] [CrossRef]
- Etemadzadeh, H.; Ainamo, J.; Murtomaa, H. Plaque growth-inhibiting effects of an abrasive fluoride-chlorhexidine toothpaste and a fluoride toothpaste containing oxidative enzymes. J. Clin. Periodontol. 1985, 12, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Midda, M.; Cooksey, M.W. Clinical uses of an enzyme-containing dentifrice. J. Clin. Periodontol. 1986, 13, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Paqué, P.N.; Schmidlin, P.R.; Wiedemeier, D.B.; Wegehaupt, F.J.; Burrer, P.D.; Körner, P.; Deari, S.; Sciotti, M.A.; Attin, T. Toothpastes with enzymes support gum health and reduce plaque formation. Int. J. Env. Res. Public Health 2021, 18, 835. [Google Scholar] [CrossRef] [PubMed]
- Curuțiu, C.; Dițu, L.M.; Grumezescu, A.M.; Holban, A.M. Polyphenols of honeybee origin with applications in dental medicine. Antibiotics 2020, 9, 856. [Google Scholar] [CrossRef]
- Bunte, K.; Hensel, A.; Beikler, T. Polyphenols in the prevention and treatment of periodontal disease: A systematic review of in vivo, ex vivo and in vitro studies. Fitoterapia 2019, 132, 30–39. [Google Scholar] [CrossRef]
- Qiu, W.; Zhou, Y.; Li, Z.; Huang, T.; Xiao, Y.; Cheng, L.; Peng, X.; Zhang, L.; Ren, B. Application of antibiotics/antimicrobial agents on dental caries. Biomed. Res. Int. 2020, 2020, 5658212. [Google Scholar] [CrossRef]
- Eden, E. Antimicrobials in caries prevention. Clin. Dent. Rev. 2017, 1, 11. [Google Scholar] [CrossRef]
- English, H.K.; Pack, A.R.; Molan, P.C. The effects of manuka honey on plaque and gingivitis: A pilot study. J. Int. Acad. Periodontol. 2004, 6, 63–67. [Google Scholar]
- Nayak, P.A.; Nayak, U.A.; Mythili, R. Effect of Manuka honey, chlorhexidine gluconate and xylitol on the clinical levels of dental plaque. Contemp. Clin. Dent. 2010, 1, 214. [Google Scholar]
- Sruthi, K.S.; Yashoda, R.; Puranik, P.M. Effectiveness of manuka honey and chlorhexidine mouthwash on gingivitis and Streptococcus Mutans count among children: A randomized controlled trial. J. Indian Assoc. Public Health 2021, 19, 259. [Google Scholar] [CrossRef]
- Aparna, S.; Srirangarajan, S.; Malgi, V.; Setlur, K.P.; Shashidhar, R.; Setty, S.; Thakur, S. A comparative evaluation of the antibacterial efficacy of honey in vitro and antiplaque efficacy in a 4-day plaque regrowth model in vivo: Preliminary results. J. Periodontol. 2012, 83, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Atwa, A.D.A.; AbuShahba, R.Y.; Mostafa, M.; Hashem, M.I. Effect of honey in preventing gingivitis and dental caries in patients undergoing orthodontic treatment. Saudi Dent. J. 2014, 26, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Bhaskar, D.J.; Gupta, D.; Agali, C.; Gupta, V.; Gupta, R.K.; Yadav, P.; Lavate, A.B.; Chaturvedi, M. Comparative evaluation of honey, chlorhexidine gluconate (0.2%) and combination of xylitol and chlorhexidine mouthwash (0.2%) on the clinical level of dental plaque: A 30 days randomized control trial. Perspect. Clin. Res. 2015, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Alibasyah, Z.M.; Saputri, D.; Alviana, V. The comparison between dental plaque score before and after gargling with tongra original honey 5% solution (Study of student in dentistry of Syiah Kuala University). Biomed. Pharmacol. J. 2018, 11, 381–385. [Google Scholar] [CrossRef]
- Singhal, R.; Siddibhavi, M.; Sankeshwari, R.; Patil, P.; Jalihal, S.; Ankola, A. Effectiveness of three mouthwashes–manuka honey, raw honey, and chlorhexidine on plaque and gingival scores of 12–15-year-old school children: A randomized controlled field trial. J. Indian Soc. Periodontol. 2018, 22, 34. [Google Scholar]
- Alkhaled, A.; Alsabek, L.; Al-assaf, M.; Badr, F. Effect of chlorhexidine, honey and propolis on Streptococcus mutans counts: In vitro study. Dentistry 2021, 9, 107–117. [Google Scholar] [CrossRef]
- Kumar, M.; Prakash, S.; Radha; Lorenzo, J.M.; Chandran, D.; Dhumal, S.; Dey, A.; Senapathy, M.; Rais, N.; Singh, S.; et al. Apitherapy and periodontal disease: Insights into in vitro, in vivo, and clinical studies. Antioxidants 2022, 11, 823. [Google Scholar] [CrossRef]
- Sharma, A.; Agarwal, N.; Anand, A.; Jabin, Z. To compare the effectiveness of different mouthrinses on Streptococcus mutans count in caries active children. J. Oral Biol. Craniofac. Res. 2018, 8, 113–117. [Google Scholar] [CrossRef]
- Postmes, T.; van den Bogaard, A.E.; Hazen, M. The sterilization of honey with cobalt 60 gamma radiation: A study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis. Experientia 1995, 51, 986–989. [Google Scholar] [CrossRef]
- Midgal, W.; Owczarczyk, H.B.; Kedzia, B.; Holderna-Kedzia, E.; Madajczyk, D. Microbial decontamination of natural honey by irradiation. Radiat. Phys. Chem. 2000, 57, 285–288. [Google Scholar]
- Saxena, S.; Gautam, S.; Sharma, A. Microbial decontamination of honey of Indian origin using gamma radiation and its biochemical and organoleptic properties. J. Food Sci. 2010, 75, M19–M27. [Google Scholar] [CrossRef] [PubMed]
- Molan, P.C.; Allen, K.L. The effect of gamma-irradiation on the antibacterial activity of honey. J. Pharm. Pharmacol. 1996, 48, 1206–1209. [Google Scholar] [CrossRef] [PubMed]
- Sabet Jalali, F.S.; Ehsani, A.; Tajik, H.; Ashtari, S. In vitro assessment of efficacy of gamma irradiation on the antimicrobial activity of iranian honey. J. Anim. Vet. Adv. 2007, 6, 996–999. [Google Scholar]
- Horniackova, M.; Bucekova, M.; Valachova, I.; Majtan, J. Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. Eur. Food Res. Technol. 2017, 243, 81–88. [Google Scholar] [CrossRef]
- Green, K.J.; Dods, K.; Hammer, K.A. Development and validation of a new microplate assay that utilises optical density to quantify the antibacterial activity of honeys including Jarrah, Marri and Manuka. PLoS ONE 2020, 15, e0243246. [Google Scholar] [CrossRef] [PubMed]
Antibacterial Factor/Compound | Origin | Target Bacteria | Mechanism of Action | Ref. | |
---|---|---|---|---|---|
Gram-Positive | Gram-Negative | ||||
MRJP1 | bee | + * | + * | Disruption of cell wall integrity * | [32,33,34] |
defensin-1 | bee | + | + | Decreased bacterial cell hydrophobicity and disruption of cell membrane permeability | [35,36,37,38] |
H2O2 | bee | + | + | Destruction of cell wall integrity. Lipid peroxidation and damage to bacterial cell proteins and DNA | [39,40,41] |
gluconic acid | bee | - | + | Membrane depolarisation and destruction | [42] |
MGO | plant | + | + | Oxidative stress by reacting with cellular proteins and DNA | [43,44,45] |
Type of Honey | Honey Concentration | Honey Sterility | Control | Participants | Outcomes | Year | Ref. |
---|---|---|---|---|---|---|---|
MH UMF 15+ | 100% | No | 0.2% CHX Sugar-free chewing gum | MH group (n = 15) Sugar-free chewing gum (n = 15) | In a pilot clinical study, MH was able to significantly reduce the plaque score after a 21-day trial period. On the other hand, no significant changes were observed in the control group. | 2004 | [80] |
MH | 100% | No | 0.2% CHX Xylitol chewing gum | MH group (n = 20) CHX group (n = 20) Xylitol chewing gum group (n = 20) | In a single-blind study, MH and chlorhexidine mouthwash significantly reduced plaque formation in comparison to xylitol chewing gum after 3 days of use. | 2010 | [81] |
Multifloral | 50% | No | 0.2% CHX Saline | Honey group (n = 22) CHX group (n = 22) Saline group (n = 22) | In a double-masked parallel clinical trial based on a 4-day plaque regrowth model, honey, although less potent than chlorhexidine, reduced plaque formation. | 2012 | [83] |
Unspecified honey | 100% | No | 10% sucrose 10% sorbitol | n = 20 * | Significant differences in plaque pH were shown between the honey and sucrose groups compared to the sorbitol group. Among the mouthwashes tested, only honey was able to significantly reduce the number of bacteria that were recovered from plaques 30 min after exposure. | 2014 | [84] |
Unspecified honey | 100% | No | 0.2% CHX Xylitol | Honey group (n = 30) CHX group (n = 30) CHX + xylitol group (n = 30) | In a single-blind randomised control trial, all groups were effective in reducing plaque. The honey group was more effective than the CHX group but comparable with the CHX + xylitol group over periods of 15 and 30 days. | 2015 | [85] |
Tongra honey | 5% | No | None- | Honey group (n = 54) | A significant difference was shown between dental plaque scores before and after using honey as a mouthwash for a period of 6 days. | 2018 | [86] |
MH RH | 40% (MH) 20% (RH) | No | 0.2% CHX | MH group (n = 45) RH group (n = 45) CHX group (n = 45) | All tested mouthwashes showed significant reductions in plaque scores. CHX was most effective in reducing plaque. No differences in efficacy were documented between MH and RH. | 2018 | [87] |
Unspecified honey | 50% | No | 0.12% CHX 5% propolis | Honey group (n=20) CHX group (n = 20) Propolis group (n = 20) | All tested mouthwashes showed an immediate and direct reduction of S. mutans load. CHX was the most effective, followed by propolis and honey. | 2021 | [88] |
MH UMF 15+ | 100% | No | 0.2% CHX | MH group (n = 30) CHX group (n = 30) | In a randomised controlled trial, no significant differences in plaque score and S. mutans count were found between groups after 7 and 14 days of treatment. | 2021 | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deglovic, J.; Majtanova, N.; Majtan, J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022, 11, 2670. https://doi.org/10.3390/foods11172670
Deglovic J, Majtanova N, Majtan J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods. 2022; 11(17):2670. https://doi.org/10.3390/foods11172670
Chicago/Turabian StyleDeglovic, Juraj, Nora Majtanova, and Juraj Majtan. 2022. "Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective" Foods 11, no. 17: 2670. https://doi.org/10.3390/foods11172670
APA StyleDeglovic, J., Majtanova, N., & Majtan, J. (2022). Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods, 11(17), 2670. https://doi.org/10.3390/foods11172670