Preparation of Functionalized Zr-Based MOFs and MOFs/GO for Efficient Removal of 1,3-Butadiene from Cigarette Smoke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Methods
2.2.1. Synthesis of MOFs
2.2.2. Synthesis of GO
2.2.3. Synthesis of UiO-66-NH2/GO Y%
2.3. Characterization of Materials
2.4. Cigarette Smoke Adsorption Experiment
2.5. Adsorption Experiments of 1,3-Butadiene
3. Results and Discussion
3.1. Influence of -NH2 Contents on the Structure and Composition of UiO-66 X%
3.2. Influence of GO Loading on the Structure and Composition of UiO-66-NH2/GO Y%
3.3. Performance Evaluation of 1,3-Butadiene Removal from Cigarette Smoke
3.4. Adsorption of Pure 1,3-Butadiene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oldham, M.J.; DeSoi, D.J.; Rimmer, L.T.; Wagner, K.A.; Morton, M.J. Insights from Analysis for Harmful and Potentially Harmful Constituents (HPHCs) in Tobacco Products. Regul. Toxicol. Pharmacol. 2014, 70, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.R.; Massey, E.D.; Smith, G. An Overview of the Effects of Tobacco Ingredients on Smoke Chemistry and Toxicity. Food Chem. Toxicol. 2004, 42, 53–83. [Google Scholar] [CrossRef]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and Number of Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in the United States: Potentially Preventable Cancers in US. CA. Cancer J. Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef]
- Fowles, J. Application of Toxicological Risk Assessment Principles to the Chemical Constituents of Cigarette Smoke. Tob. Control. 2003, 12, 424–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennings, J.L.A. Aldehyde and VOC Yields in Commercial Cigarette Mainstream Smoke Are Mutually Related and Depend on the Sugar and Humectant Content in Tobacco. Oxf. Univ. Press 2019, 203, 561131626. [Google Scholar]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Doyle, M.; Sexton, K.G.; Jeffries, H.; Bridge, K.; Jaspers, I. Effects of 1,3-Butadiene, Isoprene, and Their Photochemical Degradation Products on Human Lung Cells. Environ. Health Perspect. 2004, 112, 1488–1495. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hecht, S.S. Carcinogenic Components of Tobacco and Tobacco Smoke: A 2022 Update. Food Chem. Toxicol. 2022, 165, 113179. [Google Scholar] [CrossRef]
- Topsakal, S.; Ozmen, O.; Aslankoc, R.; Aydemir, D.H. Pancreatic Damage Induced by Cigarette Smoke: The Specific Pathological Effects of Cigarette Smoke in the Rat Model. Toxicol. Res. 2016, 5, 938–945. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Kim, J.W.; Hwang, Y.w.; Kim, J.; Kim, Y.; Chen, S. Butadiene Substance Flow Analysis and Management in South Korea. J. Clean. Prod. 2019, 220, 331–339. [Google Scholar] [CrossRef]
- Gehre, M.; Guo, Z.; Rothenberg, G.; Tanase, S. Sustainable Separations of C4-Hydrocarbons by Using Microporous Materials. ChemSusChem 2017, 10, 3947–3963. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, Y.; Shao, Q.; Long, C. Porous Polymeric Resin for Adsorbing Low Concentration of VOCs: Unveiling Adsorption Mechanism and Effect of VOCs’ Molecular Properties. Sep. Purif. Technol. 2019, 228, 115755. [Google Scholar] [CrossRef]
- Baur, G.B.; Héroguel, F.; Spring, J.; Luterbacher, J.S.; Kiwi-Minsker, L. Hydrothermally-Treated Na-X as Efficient Adsorbents for Butadiene Removal. Chem. Eng. J. 2016, 288, 19–27. [Google Scholar]
- Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Sorting of C4 Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Size-Sieving. Angew. Chem. Int. Ed. 2017, 56, 16282–16287. [Google Scholar] [CrossRef]
- Tsybulevski, A.M.; Kustov, L.M.; Weston, K.C.; Greish, A.A.; Tkachenko, O.P.; Kucherov, A.V. 1,3-Butadiene Adsorption over Transition Metal Polycation Exchanged Faujasites. Ind. Eng. Chem. Res. 2012, 51, 7073–7080. [Google Scholar] [CrossRef]
- Ul Haq, I.; Hui Li, S.; Zhen, H.-G.; Khan, R.; Zhang, A.-S.; Zhao, Z.-P. Highly Efficient Separation of 1, 3-Butadiene from Nitrogen Mixture by Adsorption on Highly Stable MOF. Chem. Eng. J. 2020, 402, 125980. [Google Scholar] [CrossRef]
- Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Recognition of 1,3-Butadiene by a Porous Coordination Polymer. Angew. Chem. Int. Ed. 2016, 55, 13784–13788. [Google Scholar] [CrossRef]
- Sun, P.; Yang, S.; Sun, X.; Wang, Y.; Pan, L.; Wang, H.; Wang, X.; Guo, J.; Nie, C. Functional Porous Carboxymethyl Cellulose/Cellulose Acetate Composite Microspheres: Preparation, Characterization, and Application in the Effective Removal of HCN from Cigarette Smoke. Polymers 2019, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Ermer, M.; Mehler, J.; Rosenberger, B.; Fischer, M.; Schulz, P.S.; Hartmann, M. UiO-66 and Hcp UiO-66 Catalysts Synthesized from Ionic Liquids as Linker Precursors. ChemistryOpen 2021, 10, 233–242. [Google Scholar] [CrossRef]
- Hossain, M.I.; Udoh, A.; Grabicka, B.E.; Walton, K.S.; Ritchie, S.M.C.; Glover, T.G. Membrane-Coated UiO-66 MOF Adsorbents. Ind. Eng. Chem. Res. 2019, 58, 1352–1362. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar]
- Li, H.-K.; Ye, H.-L.; Zhao, X.-X.; Sun, X.-L.; Zhu, Q.-Q.; Han, Z.-Y.; Yuan, R.; He, H. Artful Union of a Zirconium-Porphyrin MOF/GO Composite for Fabricating an Aptamer-Based Electrochemical Sensor with Superb Detecting Performance. Chin. Chem. Lett. 2021, 32, 2851–2855. [Google Scholar] [CrossRef]
- Fanyu Zhang, L.L.; Dobnikar, J.; Frenkel, D. Pickering Emulsions Stabilized by Metal-Organic Framework (MOF) and Graphene Oxide (GO) for Producing MOF/GO Composites. Soft Matter. 2017, 12, 35–44. [Google Scholar]
- Molavi, H.; Shojaei, A. Mixed-Matrix Composite Membranes Based on UiO-66-Derived MOFs for CO2 Separation. ACS Appl. Mater. Interfaces 2019, 11, 9448–9461. [Google Scholar] [PubMed]
- Zahed, M.; Parsamehr, P.S.; Tofighy, M.A.; Mohammadi, T. Synthesis and Functionalization of Graphene Oxide (GO) for Salty Water Desalination as Adsorbent. Chem. Eng. Res. Des. 2018, 138, 358–365. [Google Scholar]
- Kang, J.H.; Kim, T.; Choi, J.; Park, J.; Kim, Y.S.; Chang, M.S.; Jung, H.; Park, K.T.; Yang, S.J.; Park, C.R. Hidden Second Oxidation Step of Hummers Method. Chem. Mater. 2016, 28, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Karami, K.; Mardaniboldaji, A.; Rezayat, M.R.; Bayat, P.; Jafari, M.T. Novel UiO-66-NH2 /Gly/GO Nanocomposite Adsorbent for Ultra-trace Analyzing of Chlorpyrifos Pesticide by Ion Mobility Spectrometry. ChemistrySelect 2021, 6, 3370–3377. [Google Scholar]
- Ebrahim, A.M.; Bandosz, T.J. Ce(III) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions. ACS Appl. Mater. Interfaces 2013, 5, 10565–10573. [Google Scholar] [PubMed]
- Abramova, A.; Couzon, N.; Leloire, M.; Nerisson, P.; Cantrel, L.; Royer, S.; Loiseau, T.; Volkringer, C.; Dhainaut, J. Extrusion-Spheronization of UiO-66 and UiO-66_NH2 into Robust-Shaped Solids and Their Use for Gaseous Molecular Iodine, Xenon, and Krypton Adsorption. ACS Appl. Mater. Interfaces 2022, 14, 10669–10680. [Google Scholar] [CrossRef]
- Sun, W.; Li, H.; Li, H.; Li, S.; Cao, X. Adsorption Mechanisms of Ibuprofen and Naproxen to UiO-66 and UiO-66-NH2: Batch Experiment and DFT Calculation. Chem. Eng. J. 2019, 360, 645–653. [Google Scholar] [CrossRef]
- Zango, Z.U.; Sambudi, N.S.; Jumbri, K.; Abu Bakar, N.H.H.; Abdullah, N.A.F.; Negim, E.-S.M.; Saad, B. Experimental and Molecular Docking Model Studies for the Adsorption of Polycyclic Aromatic Hydrocarbons onto UiO-66(Zr) and NH2-UiO-66(Zr) Metal-Organic Frameworks. Chem. Eng. Sci. 2020, 220, 115608. [Google Scholar] [CrossRef]
- Rongming Xu, Q.J.; Pin Zhao, M.J. Hierarchically Porous UiO-66 with Tunable Mesopores and Oxygen Vacancies for Enhanced Arsenic Removal. J. Mater. Chem. A 2020, 16, 7870–7879. [Google Scholar]
- Yang, Y.; Wu, W.; Wang, Z.; Huang, L.; Ma, X.; Zhang, Z.; Xiang, S. UiO-66/GO Composites with Improved Electrochemical Properties for Effective Detection of Phosphite(P(III)) in Phosphate(P(V)) Buffer Solutions. ChemistrySelect 2020, 5, 10855–10862. [Google Scholar] [CrossRef]
- Liu, J.; Jeong, H.; Liu, J.; Lee, K.; Park, J.-Y.; Ahn, Y.H.; Lee, S. Reduction of Functionalized Graphite Oxides by Trioctylphosphine in Non-Polar Organic Solvents. Carbon 2010, 48, 2282–2289. [Google Scholar] [CrossRef]
- Ma, J.; Guo, X.; Ying, Y.; Liu, D.; Zhong, C. Composite Ultrafiltration Membrane Tailored by MOF@GO with Highly Improved Water Purification Performance. Chem. Eng. J. 2016, 16, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Heu, R.; Ateia, M.; Awfa, D.; Punyapalakul, P.; Yoshimura, C. Photocatalytic Degradation of Organic Micropollutants in Water by Zr-MOF/GO Composites. J. Compos. Sci. 2020, 4, 54. [Google Scholar] [CrossRef]
- Padin, J.; Yang, R.T.; Munson, C.L. New Sorbents for Olefin/Paraffin Separations and Olefin Purification for C4 Hydrocarbons. Ind. Eng. Chem. Res. 1999, 38, 3614–3621. [Google Scholar] [CrossRef]
Sample | ZrCl4 (g) | H2BDC (g) | NH2-BDC (g) | GO (g) | DMF (mL) |
---|---|---|---|---|---|
UiO-66 | 0.6991 | 0.4984 | 0 | 0 | 50 |
UiO-66 25% | 0.6991 | 0.3738 | 0.1358 | 0 | 50 |
UiO-66 50% | 0.6991 | 0.2492 | 0.2716 | 0 | 50 |
UiO-66 75% | 0.6991 | 0.1246 | 0.4074 | 0 | 50 |
UiO-66-NH2 | 0.6991 | 0 | 0.5432 | 0 | 50 |
UiO-66-NH2/GO 2% | 0.6991 | 0 | 0.5432 | 0.0140 | 50 |
UiO-66-NH2/GO 5% | 0.6991 | 0 | 0.5432 | 0.0350 | 50 |
UiO-66-NH2/GO 10% | 0.6991 | 0 | 0.5432 | 0.0699 | 50 |
Sample | BET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
UiO-66 | 1135 | 0.43 | 0.81 |
UiO-66 25% | 923 | 0.34 | 0.81 |
UiO-66 50% | 847 | 0.32 | 0.81 |
UiO-66 75% | 820 | 0.31 | 0.81 |
UiO-66-NH2 | 1088 | 0.40 | 0.81 |
Sample | BET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
GO | 33 | 0.01 | 1.12 |
UiO-66-NH2 | 1088 | 0.40 | 0.81 |
UiO-66-NH2/GO 2% | 928 | 0.35 | 0.83, 1.12 |
UiO-66-NH2/GO 5% | 794 | 0.32 | 0.86, 1.06 |
UiO-66-NH2/GO 10% | 766 | 0.29 | 0.91, 1.06 |
Sample | 1,3-Butadiene Yield (μg·cig−1) | 1,3-Butadiene Removal Efficiency (%) |
---|---|---|
Blank control | 38.21 | 0 |
Active carbon | 34.95 | 8.31 |
UiO-66 | 33.87 | 11.15 |
UiO-66 25% | 33.56 | 11.96 |
UiO-66 50% | 33.40 | 12.38 |
UiO-66 75% | 33.38 | 12.42 |
UiO-66-NH2 | 32.89 | 13.71 |
GO | 35.42 | 7.06 |
UiO-66-NH2/GO 2% | 27.93 | 26.73 |
UiO-66-NH2/GO 5% | 25.21 | 33.85 |
UiO-66-NH2/GO 10% | 27.39 | 28.14 |
Sample | Benzene (%) | Toluene (%) | Isoprene (%) |
---|---|---|---|
UiO-66 | 8.73 | 10.75 | 7.65 |
UiO-66 25% | 9.29 | 10.06 | 7.94 |
UiO-66 50% | 9.75 | 11.34 | 7.53 |
UiO-66 75% | 9.62 | 11.27 | 7.89 |
UiO-66-NH2 | 10.72 | 11.65 | 8.35 |
GO | 4.54 | 3.75 | 4.16 |
UiO-66-NH2/GO 2% | 21.16 | 21.73 | 18.67 |
UiO-66-NH2/GO 5% | 28.22 | 25.42 | 23.62 |
UiO-66-NH2/GO 10% | 27.32 | 24.04 | 22.13 |
Sample | Adsorption Capacities of 1,3-Butadiene (mg/g) |
---|---|
UiO-66 | 210.01 |
UiO-66 25% | 214.11 |
UiO-66 50% | 222.46 |
UiO-66 75% | 227.09 |
UiO-66-NH2 | 238.68 |
GO | 18.79 |
UiO-66-NH2/GO 2% | 238.01 |
UiO-66-NH2/GO 5% | 239.54 |
UiO-66-NH2/GO 10% | 236.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, C.; Zhang, H.; Qian, J.; Yang, S.; Liao, H.; Sun, X.; Wang, Y.; Sun, P.; Jia, Y.; et al. Preparation of Functionalized Zr-Based MOFs and MOFs/GO for Efficient Removal of 1,3-Butadiene from Cigarette Smoke. Materials 2023, 16, 684. https://doi.org/10.3390/ma16020684
Yang Y, Wang C, Zhang H, Qian J, Yang S, Liao H, Sun X, Wang Y, Sun P, Jia Y, et al. Preparation of Functionalized Zr-Based MOFs and MOFs/GO for Efficient Removal of 1,3-Butadiene from Cigarette Smoke. Materials. 2023; 16(2):684. https://doi.org/10.3390/ma16020684
Chicago/Turabian StyleYang, Yunxin, Cong Wang, Hua Zhang, Jiancai Qian, Song Yang, Huiyun Liao, Xuehui Sun, Yipeng Wang, Peijian Sun, Yunzhen Jia, and et al. 2023. "Preparation of Functionalized Zr-Based MOFs and MOFs/GO for Efficient Removal of 1,3-Butadiene from Cigarette Smoke" Materials 16, no. 2: 684. https://doi.org/10.3390/ma16020684