Effect of Spinal Alignment Changes on Lower Back Pain in Patients Treated with Total Hip Arthroplasty for Hip Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Offierski, C.M.; MacNab, I. Hip-spine syndrome. Spine 1983, 8, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.I.; Miller, T.T.; Kim, H.J.; Barlow, B.T.; Wright, T.M.; Padgett, D.E.; Jerabek, S.A.; Mayman, D.J. Does Degenerative Lumbar Spine Disease Influence Femoroacetabular Flexion in Patients Undergoing Total Hip Arthroplasty? Clin. Orthop. Relat. Res. 2016, 474, 788–797. [Google Scholar] [CrossRef] [Green Version]
- Buckland, A.J.; Vigdorchik, J.; Schwab, F.J.; Errico, T.J.; Lafage, R.; Ames, C.; Bess, S.; Smith, J.; Mundis, G.M.; Lafage, V. Acetabular Anteversion Changes Due to Spinal Deformity Correction: Bridging the Gap Between Hip and Spine Surgeons. J. Bone Joint Surg. 2015, 97, 1913–1920. [Google Scholar] [CrossRef]
- Glassman, S.D.; Bridwell, K.; Dimar, J.R.; Horton, W.; Berven, S.; Schwab, F. The impact of positive sagittal balance in adult spinal deformity. Spine 2005, 30, 2024–2029. [Google Scholar] [CrossRef] [PubMed]
- Lafage, V.; Schwab, F.; Patel, A.; Hawkinson, N.; Farcy, J.P. Pelvic tilt and truncal inclination: Two key radiographic parameters in the setting of adults with spinal deformity. Spine 2009, 34, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.J.; Wang, W.J.; Wu, M.D.; Xu, Z.H.; Xu, L.L.; Qiu, Y. Characteristics of sagittal spine-pelvis-leg alignment in patients with severe hip osteoarthritis. Eur. Spine J. 2015, 24, 228–236. [Google Scholar] [CrossRef]
- Ben-Galim, P.; Ben-Galim, T.; Rand, N.; Haim, A.; Hipp, J.; Dekel, S.; Floman, Y. Hip-spine syndrome: The effect of total hip replacement surgery on low back pain in severe osteoarthritis of the hip. Spine 2007, 32, 2099–2102. [Google Scholar] [CrossRef]
- Radcliff, K.E.; Orozco, F.; Molby, N.; Delasotta, L.; Chen, E.; Post, Z.; Ong, A. Change in spinal alignment after total hip arthroplasty. Orthop. Surg. 2013, 5, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Iida, S.; Suzuki, C.; Shinada, Y.; Shoji, T.; Takahashi, K.; Ohtori, S. Spinopelvic Alignment and Low Back Pain after Total Hip Replacement Arthroplasty in Patients with Severe Hip Osteoarthritis. Asian Spine J. 2018, 12, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, Y.; Sato, S.; Abe, S.; Masuda, T.; Yamada, K. The impact of the leg-lengthening total hip arthroplasty on the coronal alignment of the spine. Scoliosis 2015, 10 (Suppl. 2), S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyvazov, K.; Eyvazov, B.; Basar, S.; Nasto, L.A.; Kanatli, U. Effects of total hip arthroplasty on spinal sagittal alignment and static balance: A prospective study on 28 patients. Eur. Spine J. 2016, 25, 3615–3621. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Wu, H.; Wu, M.; Zhu, Y.; Qiu, Y.; Wang, W. The effect of total hip arthroplasty on sagittal spinal-pelvic-leg alignment and low back pain in patients with severe hip osteoarthritis. Eur. Spine J. 2016, 25, 3608–3614. [Google Scholar] [CrossRef] [PubMed]
- Swarm, R.A.; Abernethy, A.P.; Anghelescu, D.L.; Benedetti, C.; Buga, S.; Cleeland, C.; Deleon-Casasola, O.A.; Eilers, J.G.; Ferrell, B.; Green, M.; et al. National Comprehensive Cancer N. Adult cancer pain. J. Natl. Compr. Canc. Netw. 2013, 11, 992–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulay, C.; Bollini, G.; Legaye, J.; Tardieu, C.; Prat-Pradal, D.; Chabrol, B.; Jouve, J.L.; Duval-Beaupere, G.; Pelissier, J. Pelvic incidence: A predictive factor for three-dimensional acetabular orientation-a preliminary study. Anat Res. Int. 2014, 594650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legaye, J.; Duval-Beaupere, G.; Hecquet, J.; Marty, C. Pelvic incidence: A fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur. Spine J. 1998, 7, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, P.H.; Chang, Y.; Chen, D.W.; Lee, M.S.; Shih, H.N.; Ueng, S.W. Pain distribution and response to total hip arthroplasty: A prospective observational study in 113 patients with end-stage hip disease. J. Orthop. Sci. 2012, 17, 213–218. [Google Scholar] [CrossRef]
- Parvizi, J.; Pour, A.E.; Hillibrand, A.; Goldberg, G.; Sharkey, P.F.; Rothman, R.H. Back pain and total hip arthroplasty: A prospective natural history study. Clin. Orthop. Relat Res. 2010, 468, 1325–1330. [Google Scholar] [CrossRef] [Green Version]
- Staibano, P.; Winemaker, M.; Petruccelli, D.; de Beer, J. Total joint arthroplasty and preoperative low back pain. J. Arthroplast. 2014, 29, 867–871. [Google Scholar] [CrossRef]
- Redmond, J.M.; Gupta, A.; Hammarstedt, J.E.; Stake, C.E.; Domb, B.G. The hip-spine syndrome: How does back pain impact the indications and outcomes of hip arthroscopy? Arthroscopy 2014, 30, 872–881. [Google Scholar] [CrossRef]
- Lazennec, J.Y.; Brusson, A.; Rousseau, M.A. Hip-spine relations and sagittal balance clinical consequences. Eur. Spine J. 2011, 20 (Suppl. 5), 686–698. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Matsumoto, S.; Fujii, K.; Tamari, K.; Mitani, S.; Tsubahara, A. Factors related to low back pain in patients with hip osteoarthritis. J. Back Musculoskelet Rehabil. 2015, 28, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.C.; Saddiki, R.; Franke, J.; Rigal, J.; Aunoble, S. Equilibrium of the human body and the gravity line: The basics. Eur. Spine J. 2011, 20 (Suppl. 5), 558–563. [Google Scholar] [CrossRef] [Green Version]
- Le Huec, J.C.; Roussouly, P. Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur. Spine J. 2011, 20 (Suppl. 5), 556–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaleat-Valayer, E.; Mac-Thiong, J.M.; Paquet, J.; Berthonnaud, E.; Siani, F.; Roussouly, P. Sagittal spino-pelvic alignment in chronic low back pain. Eur. Spine J. 2011, 20 (Suppl. 5), 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, F.J.; Blondel, B.; Bess, S.; Hostin, R.; Shaffrey, C.I.; Smith, J.S.; Boachie-Adjei, O.; Burton, D.C.; Akbarnia, B.A.; Mundis, G.M.; et al. International Spine Study G. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: A prospective multicenter analysis. Spine 2013, 38, E803–E812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 1, CD011279. [Google Scholar] [CrossRef] [Green Version]
Preoperative | Postperative (12 M) | p | |
---|---|---|---|
(n = 74) | (n = 74) | ||
Radiographic Parameters | |||
Sagittal Parameters | |||
C7-SVA | 41.0 ± 43.1 | 37.1 ± 46.5 | 0.36 |
LL | 51.9 ± 14.4 | 49.8 ± 16.6 | 0.08 |
PI | 55.4 ± 10.1 | 53.5 ± 10.2 | 0.01 |
PT | 15.6 ± 9.8 | 17.5 ± 9.9 | 0.01 |
SS | 39.8 ± 8.3 | 36.1 ± 9.7 | <0.01 |
PI minus LL | 3.5 ± 15.3 | 3.7 ± 17.1 | 0.51 |
Coronal Parameters | |||
C7-CSVL | 12.8 ± 10.6 | 7.6 ± 8.5 | 0.01 |
Pelvic Obliquity Angle | 2.6 ± 3.0 | 1.6 ± 2.1 | <0.01 |
Patient-Reported Outcomes | |||
LBP (NRS) | 2.8 ± 2.3 | 2.4 ± 2.3 | 0.15 |
EQ-5D | 0.74 ± 0.09 | 0.85 ± 0.10 | <0.01 |
SF-12 PCS | 28.5 ± 13.0 | 45.7 ± 12.9 | <0.01 |
SF-12 MCS | 54.2 ± 10.9 | 56.1 ± 8.6 | 0.13 |
LBP+ (n = 26) | LBP− (n = 48) | p | |
---|---|---|---|
Radiographic Parameters | |||
Sagittal Parameters | |||
C7-SVA | 54.8 ± 52.6 | 33.4 ± 34.9 | 0.26 |
LL | 45.4 ± 18.2 | 55.5 ± 10.4 | <0.01 |
PI | 57.6 ± 10.3 | 54.2 ± 10.0 | 0.12 |
PT | 19.9 ± 9.6 | 13.3 ± 9.3 | <0.01 |
SS | 37.7 ± 8.6 | 41.0 ± 8.1 | 0.13 |
PI minus LL | 12.2 ± 18.8 | −1.3 ± 12.4 | <0.001 |
Coronal Parameters | |||
C7PL-CSVL | 15.3 ± 11.9 | 11.4 ± 9.9 | 0.23 |
Pelvic Obliquity Angle | 2.8 ± 2.8 | 2.5 ± 3.1 | 0.69 |
Patient-Reported Outcomes | |||
LBP (NRS) | 6.0 ± 1.8 | 1.1 ± 0.9 | <0.001 |
EQ-5D | 0.73 ± 0.10 | 0.75 ± 0.08 | 0.31 |
SF-12 PCS | 27.3 ± 12.0 | 29.2 ± 13.5 | 0.55 |
SF-12 MCS | 52.4 ± 10.9 | 55.1 ± 10.9 | 0.49 |
Improved | Not Improved | p | |
---|---|---|---|
n = 14 | n = 12 | ||
Radiographic Parameters | |||
Sagittal Parameters | |||
C7-SVA | 35.5 ± 54.0 | 64.0 ± 52.8 | 0.38 |
LL | 44.5 ± 17.8 | 46.5 ± 19.4 | 0.98 |
PI | 56.9 ± 11.7 | 57.5 ± 7.4 | 0.66 |
PT | 20.7 ± 11.7 | 19.0 ± 6.8 | 0.54 |
SS | 36.2 ± 7.3 | 38.5 ± 9.8 | 0.57 |
PI minus LL | 12.4 ± 20.5 | 11.8 ± 17.2 | 0.98 |
Coronal Parameters | |||
C7PL-CSVL | 15.4 ± 12.8 | 15.1 ± 11.2 | 0.88 |
Pelvic Obliquity Angle | 3.1 ± 3.2 | 2.5 ± 2.2 | 0.62 |
Patient-Reported Outcomes | |||
LBP (NRS) | 5.6 ± 1.9 | 6.3 ± 1.8 | <0.001 |
EQ-5D | 0.74 ± 0.11 | 0.72 ± 0.1 | 0.81 |
SF-12 PCS | 29.2 ± 13.5 | 25.3 ± 10.2 | 0.42 |
SF-12 MCS | 53.6 ± 12.8 | 51.0 ± 8.7 | 0.54 |
Improved | Not Improved | p | |
---|---|---|---|
n = 14 | n = 12 | ||
Radiographic Parameters | |||
Sagittal Parameters | |||
C7-SVA | 58.3 ± 57.3 | 66.9 ± 49.3 | 0.57 |
LL | 41.2 ± 21.2 | 41.7 ± 24.1 | 0.92 |
PI | 56.5 ± 10.0 | 53.5 ± 10.1 | 0.90 |
PT | 22.1 ± 10.4 | 21.5 ± 7.3 | 0.86 |
SS | 34.4 ± 8.6 | 32.1 ± 10.7 | 0.50 |
PI minus LL | 14.9 ± 22.4 | 13.0 ± 21.4 | 0.88 |
Coronal Parameters | |||
C7PL-CSVL | 12.0 ± 9.8 | 10.6 ± 9.9 | 0.83 |
Pelvic Obliquity Angle | 0.9 ± 0.9 | 2.4 ± 3.7 | 0.65 |
Patient-Reported Outcomes | |||
LBP (NRS) | 2.4 ± 2.0 | 6.8 ± 2.3 | <0.001 |
EQ-5D | 0.86 ± 0.13 | 0.76 ± 0.10 | 0.04 |
SF-12 PCS | 47.2 ± 13.3 | 36.7 ± 13.2 | 0.06 |
SF-12 MCS | 56.6 ± 9.8 | 51.7 ± 7.6 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiki, F.; Tanaka, T.; Tachibana, N.; Oshima, H.; Kaneko, T.; Horii, C.; Nakamoto, H.; Kato, S.; Doi, T.; Matsubayashi, Y.; et al. Effect of Spinal Alignment Changes on Lower Back Pain in Patients Treated with Total Hip Arthroplasty for Hip Osteoarthritis. Medicina 2021, 57, 1219. https://doi.org/10.3390/medicina57111219
Saiki F, Tanaka T, Tachibana N, Oshima H, Kaneko T, Horii C, Nakamoto H, Kato S, Doi T, Matsubayashi Y, et al. Effect of Spinal Alignment Changes on Lower Back Pain in Patients Treated with Total Hip Arthroplasty for Hip Osteoarthritis. Medicina. 2021; 57(11):1219. https://doi.org/10.3390/medicina57111219
Chicago/Turabian StyleSaiki, Fumiko, Takeyuki Tanaka, Naohiro Tachibana, Hirofumi Oshima, Taizo Kaneko, Chiaki Horii, Hideki Nakamoto, So Kato, Toru Doi, Yoshitaka Matsubayashi, and et al. 2021. "Effect of Spinal Alignment Changes on Lower Back Pain in Patients Treated with Total Hip Arthroplasty for Hip Osteoarthritis" Medicina 57, no. 11: 1219. https://doi.org/10.3390/medicina57111219
APA StyleSaiki, F., Tanaka, T., Tachibana, N., Oshima, H., Kaneko, T., Horii, C., Nakamoto, H., Kato, S., Doi, T., Matsubayashi, Y., Taniguchi, Y., Tanaka, S., & Oshima, Y. (2021). Effect of Spinal Alignment Changes on Lower Back Pain in Patients Treated with Total Hip Arthroplasty for Hip Osteoarthritis. Medicina, 57(11), 1219. https://doi.org/10.3390/medicina57111219