Increased Vascular Endothelial Growth Factor Serum Level and the Role of +936C/T Gene Polymorphism in Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quaderi, S.; Hurst, J. The unmet global burden of COPD. Glob. Health Epidemiol. Genom. 2018, 3, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel-Hett, S.; D’Amore, P. Signal transduction in vasculogenesis and developmental angiogenesis. Int. J. Dev. Biol. 2011, 55, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.A.; Fearnley, G.W.; Tomlinson, D.C.; Harrison, M.A.; Ponnambalam, S. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Biosci. Rep. 2015, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melincovici, C.; Bosca, A.; Susman, S.; Marginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.; Roman, L.; Mihu, C. Vascular endothe-lial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar]
- Krüger-Genge, A.; Blocki, A.; Franke, R.-P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [Green Version]
- Sauler, M.; Bazan, I.S.; Lee, P.J. Cell Death in the Lung: The Apoptosis–Necroptosis Axis. Annu. Rev. Physiol. 2019, 81, 375–402. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.F.; Azad, F.J.; Yousefzadeh, H.; Rafatpanah, H.; Hafizi, S.; Tehrani, H.; Khani, M. Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease. Med. J. Islam. Repub. Iran 2014, 28, 85. [Google Scholar]
- Boueiz, A.; Lutz, S.M.; Cho, M.H.; Hersh, C.P.; Bowler, R.P.; Washko, G.R.; Halper-Stromberg, E.; Bakke, P.; Gulsvik, A.; Laird, N.M.; et al. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution. Am. J. Respir. Crit. Care Med. 2017, 195, 757–771. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.P.; Di Liao, C.; Fu, B.Y.; Lam, L.C.; Tang, N.L. Interindividual and Interethnic Variation in Genomewide Gene Expression: Insights into the Biological Variation of Gene Expression and Clinical Implications. Clin. Chem. 2009, 55, 774–785. [Google Scholar] [CrossRef] [Green Version]
- Voelkel, N.F.; Vandivier, R.W.; Tuder, R.M. Vascular endothelial growth factor in the lung. Am. J. Physiol. Cell. Mol. Physiol. 2006, 290, L209–L221. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Cao, K.; Chen, W.; Pan, X.; Zhao, H. Four Common Vascular Endothelial Growth Factor Polymorphisms (−2578C>A, −460C>T, +936C>T, and +405G>C) in Susceptibility to Lung Cancer: A Meta-Analysis. PLoS ONE 2013, 8, e75123. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, G.; Fu, M. Polymorphisms in the vascular endothelial growth factor (VEGF) gene associated with asthma. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, R.A.; Buist, A.S.; Calverley, P.M.A.; Jenkins, C.R.; Hurd, S.S. Global Strategy for the Diagnosis, Management, and Pre-vention of Chronic Obstructive Pulmonary Disease: NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop Summary. Am. J. Respir. Crit. Care Med. 2001, 163, 1256–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standardized lung function testing. Report working party. Bull. Eur. Physiopathol. Respir. 1983, 19 (Suppl. S5), 1–95.
- Sarkar, M.; Niranjan, N.; Banyal, P. Mechanisms of hypoxemia. Lung India 2017, 34, 47. [Google Scholar] [CrossRef] [PubMed]
- Grzela, K.; Litwiniuk, M.; Zagorska, W.; Grzela, T. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: The Role of Matrix Metalloproteinase-9. Arch. Immunol. Ther. Exp. 2015, 64, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornwell, W.D.; Kim, V.; Song, C.; Rogers, T.J. Pathogenesis of inflammation and repair in advanced COPD. Semin. Respir. Crit. Care Med. 2010, 31, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Matarese, A.; Santulli, G. Angiogenesis in Chronic Obstructive Pulmonary Disease: A Translational Appraisal. Transl. Med. UniSa 2012, 3, 49–56. [Google Scholar]
- Cudkowicz, L. Leonardo de Vinci and the bronchial circulation. Br. J. Tuberc. Dis. Chest 1953, 47, 23–25. [Google Scholar] [PubMed]
- Lee, C.G.; Ma, B.; Takyar, S.; Ahangari, F.; DeLaCruz, C.; He, C.H.; Elias, J.A. Studies of Vascular Endothelial Growth Factor in Asthma and Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2011, 8, 512–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, R.D.; Le, T.M.; Haggstrom, D.E.; Gentzler, R.D. Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res. 2015, 4, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Tsakogiannis, D.; Nikolakopoulou, A.; Zagouri, F.; Stratakos, G.; Syrigos, K.; Zografos, E.; Koulouris, N.; Bletsa, G. Update Overview of the Role of Angiopoietins in Lung Cancer. Medicina 2021, 57, 1191. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Z.; Chen, B.; He, W.; Hu, J.; Zhang, L.; Liu, X.; Chen, F. The Role of Vascular Endothelial Growth Factor in Small-airway Remodelling in a Rat Model of Chronic Obstructive Pulmonary Disease. Sci. Rep. 2017, 7, srep41202. [Google Scholar] [CrossRef] [Green Version]
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vempati, P.; Popel, A.S.; Mac Gabhann, F. Extracellular regulation of VEGF: Isoforms, proteolysis, and vascular pattering. Cytokine Growth Factor Rev. 2014, 25, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 789–791. [Google Scholar] [CrossRef] [Green Version]
- Kranenburg, A.R.; de Boer, W.I.; Alagappan, V.K.T.; Sterk, P.J.; Sharma, H.S. Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax 2005, 60, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, D.; Chetta, A. Therapeutic Perspectives in Vascular Remodeling in Asthma and Chronic Obstructive Pulmonary Disease; Marone, G., Granata, F., Eds.; Chemical Immunology and Allergy: Basel, Switzerland, 2013; pp. 216–225. [Google Scholar]
- Laddha, A.P.; Kulkarni, Y.A. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir. Med. 2019, 156, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Valipour, A.; Schreder, M.; Wolzt, M.; Saliba, S.; Kapiotis, S.; Eickhoff, P.; Burghuber, O. Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clin. Sci. 2008, 115, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeck, L.; Mandal, J.; Costa, L.; Roth, M.; Tamm, M.; Stolz, D. Longitudinal Measurement of Serum Vascular Endothelial Growth Factor in Patients with Chronic Obstructive Pulmonary Disease. Respiration 2015, 90, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Celli, B.; Tetzlaff, K.; Criner, G.; Polkey, M.I.; Sciurba, F.; Casaburi, R.; Tal-Singer, R.; Kawata, A.; Merrill, D.; Rennard, S. The 6-Minute-Walk Distance Test as a Chronic Obstructive Pulmonary Disease Stratification Tool. Insights from the COPD Biomarker Qualification Consortium. Am. J. Respir. Crit. Care Med. 2016, 194, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Dugac, A.V.; Ruzic, A.; Samarzija, M.; Badovinac, S.; Kehler, T.; Jakopovic, M. Persistent endothelial dysfunction turns the frequent exacerbator COPD from respiratory disorder into a progressive pulmonary and systemic vascular disease. Med. Hypotheses 2015, 84, 155–158. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, B.; López, E.; Bai, C.; Wang, X. Gene polymorphisms and chronic obstructive pulmonary disease. J. Cell. Mol. Med. 2014, 18, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Chang, D.; Lu, G.; Deng, X. Genetic polymorphism and chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1385–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Niu, H.; Li, Y.; He, P.; Li, Q.; Ouyang, Y.; Li, M.; Hu, Z.; Zhong, Y.; Sun, P.; et al. Polymorphisms in VEGF-A are associated with COPD risk in the Chinese population from Hainan province. J. Genet. 2016, 95, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-G.; Wang, B.-Z.; Cheng, Z.-Z. The association of genetic polymorphisms of hypoxia inducible factor-1 alpha and vascular endothelial growth factor with increased risk of chronic obstructive pulmonary disease: A case–control study. Kaohsiung J. Med. Sci. 2017, 33, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Xia, C.; Wang, K.; Duan, Y.; Cheng, P.; Xiong, B. A meta-analysis of the vascular endothelial growth factor polymorphisms associated with the risk of pre-eclampsia. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, B.K.; Yadav, R.; Chang, H.; Choi, K.; Kim, J.-T.; Park, M.S.; Kang, H.G.; Choo, I.; Ahn, S.H.; Oh, D.S.; et al. Genetic Polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF Gene Are Correlated with Extracranial Internal Carotid Artery Stenosis and Ischemic Stroke. Ann. Clin. Lab. Sci. 2017, 47, 144–155. [Google Scholar]
- Zhang, L.; Ren, K.; Zuo, L.; Zou, J.; Song, N.; Mi, Y.; Wang, Z.; Zhang, W. VEGF gene rs3025039C/T and rs833052C/A variants are associated with bladder cancer risk in Asian descendants. J. Cell. Biochem. 2019, 120, 10402–10412. [Google Scholar] [CrossRef] [PubMed]
- Baz-Dávila, R.; Espinoza-Jimenez, A.; Rodríguez-Pérez, M.D.C.; Zulueta, J.; Varo, N.; Montejo, Á.; Almeida-González, D.; Aguirre-Jaime, A.; Cordoba-Lanus, E.; Casanova, C. Role of HIF1A, VEGFA and VEGFR2 SNPs in the Susceptibility and Progression of COPD in a Spanish Population. PLoS ONE 2016, 11, e0154998. [Google Scholar] [CrossRef]
Cases (n = 60) | Controls (n = 60) | p Value | ||
---|---|---|---|---|
Age | 66.2 ± 9.3 | 65.1 ± 10.3 | 0.53 a | |
Gender Male/Female | 54/6 | 56/4 | 0.48 b | |
BMI | 29.4 ± 6.3 | 28 ± 5.1 | 0.55 a | |
FEV1s (n, %) | <30% | 13 (21.6%) | ||
30–50% | 28 (46.6%) | |||
≥50% | 19 (31.6%) | |||
PaO2 | 70.5 ± 18.6 | |||
PaCO2 | 44.7 ± 9.56 | |||
SpO2 | 90.8 ± 5.92 | |||
6MWT (m) | 303.9 ± 97.7 |
Age | PYI | 6MWT Distance | FEV1s (%) | SpO2 | PaO2 | PaCO2 | ||
---|---|---|---|---|---|---|---|---|
VEGF serum levels COPD group | Pearson Correlation | −0.209 | 0.009 | 0.286 | −0.075 | 0.020 | 0.004 | −0.098 |
Sig. (2-tailed) | 0.109 | 0.948 | 0.027 | 0.567 | 0.882 | 0.973 | 0.457 |
COPD Patients | Healthy Subjects | ||||
---|---|---|---|---|---|
Number | Percent | Number | Percent | ||
Genotypes | CC | 42 | 70.0% | 48 | 80.0% |
CT | 11 | 18.3% | 12 | 20.0% | |
TT | 7 | 11.6% | 0 | 0.0% | |
Alleles | C | 95 | 76.16% | 108 | 90.0% |
T | 25 | 20.83% | 12 | 10.0% |
COPD Patients | Healthy Subjects | Global | |||||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | ||
Genotypes | CC | 104.476 | 66.265 | 3.771 | 11.258 | 50.76 | 68.134 |
CT | 89.63 | 69.068 | 5.75 | 13.471 | 45.87 | 63.991 | |
TT | 123 | 68.595 | - | 123 | 68.595 | ||
Probability | 0.413 ** | 0.573 * | 0.014 ** | ||||
Alleles | C | 102.758 | 66.036 | 3.991 | 11.419 | 50.212 | 67.373 |
T | 108.32 | 68.015 | 5.75 | 13.471 | 75.054 | 74.223 | |
Probability | 0.831 * | 0.594 * | 0.026 * |
Genotypes | ||||||
---|---|---|---|---|---|---|
CC | CT | TT | ||||
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
PaO2 | 71.317 | 20.982 | 72.282 | 12.225 | 63.400 | 10.511 |
PaCO2 | 44.988 | 10.530 | 42.482 | 6.892 | 46.700 | 7.029 |
FEV1s (%) | 45.495 | 15.584 | 43.094 | 12.659 | 41.486 | 22.422 |
FVC (%) | 77.102 | 14.701 | 75.927 | 7.340 | 75.214 | 8.077 |
6MWT distance | 312.976 | 99.671 | 279.545 | 81.623 | 287.857 | 114.231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chis, A.F.; Râjnoveanu, R.-M.; Man, M.A.; Todea, D.A.; Chis, B.A.; Stancu, B.; Arghir, I.A.; Alexescu, T.G.; Pop, C.M. Increased Vascular Endothelial Growth Factor Serum Level and the Role of +936C/T Gene Polymorphism in Chronic Obstructive Pulmonary Disease. Medicina 2021, 57, 1351. https://doi.org/10.3390/medicina57121351
Chis AF, Râjnoveanu R-M, Man MA, Todea DA, Chis BA, Stancu B, Arghir IA, Alexescu TG, Pop CM. Increased Vascular Endothelial Growth Factor Serum Level and the Role of +936C/T Gene Polymorphism in Chronic Obstructive Pulmonary Disease. Medicina. 2021; 57(12):1351. https://doi.org/10.3390/medicina57121351
Chicago/Turabian StyleChis, Ana Florica, Ruxandra-Mioara Râjnoveanu, Milena Adina Man, Doina Adina Todea, Bogdan Augustin Chis, Bogdan Stancu, Ioan Anton Arghir, Teodora Gabriela Alexescu, and Carmen Monica Pop. 2021. "Increased Vascular Endothelial Growth Factor Serum Level and the Role of +936C/T Gene Polymorphism in Chronic Obstructive Pulmonary Disease" Medicina 57, no. 12: 1351. https://doi.org/10.3390/medicina57121351
APA StyleChis, A. F., Râjnoveanu, R. -M., Man, M. A., Todea, D. A., Chis, B. A., Stancu, B., Arghir, I. A., Alexescu, T. G., & Pop, C. M. (2021). Increased Vascular Endothelial Growth Factor Serum Level and the Role of +936C/T Gene Polymorphism in Chronic Obstructive Pulmonary Disease. Medicina, 57(12), 1351. https://doi.org/10.3390/medicina57121351