Associations between Diet Quality and Anthropometric Measures in White Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Dietary Assessment
2.3. Anthropometric Measures
2.4. Bone Mineral Density
2.5. Other Questionnaires
2.6. Statistical Analyses
3. Results
3.1. Study Participants
3.2. Dietary Intake
3.3. Waist Circumference
3.4. Bone Mineral Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
B | SE(B) | β | p | 95% Confidence Interval | |
---|---|---|---|---|---|
Constant | 83.974 | 4.953 | - | 0.000 | 74.251, 93.697 |
Age | 0.215 | 0.071 | 0.111 | 0.003 | 0.075,0.355 |
HEI score | −0.168 | 0.042 | −0.143 | 0.000 | −0.251, −0.085 |
Physical Activity 1 | −1.985 | 0.694 | −0.102 | 0.004 | −3.348, −0.623 |
Medication use 2 | −1.491 | 0.729 | −0.075 | 0.041 | −2.923, −0.060 |
References
- Davis, S.R.; Lambrinoudaki, I.; Lumsden, M.; Mishra, G.D.; Pal, L.; Rees, M.; Santoro, N.; Simoncini, T. Menopause. Nat. Rev. Dis. Primers 2015, 1, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.A.; Davis, S.R.; De Villiers, T.J.; Gompel, A.; Henderson, V.W.; Hodis, H.N.; Lumsden, M.A.; Mack, W.J.; Shapiro, S.; Baber, R.J. Prevention of diseases after menopause. Climacteric 2014, 17, 540–556. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, E.; Collazo-Clavell, M.L.; Faubion, S.S. Weight Gain in Women at Midlife: A Concise Review of the Pathophysiology and Strategies for Management. Mayo Clin. Proc. 2017, 92, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Greendale, G.A.; Sternfeld, B.; Huang, M.H.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.F.; Karlamangla, A.S. Changes in body composition and weight during the menopause transition. JCI Insight 2019, 4. [Google Scholar] [CrossRef]
- Brown, L.M.; Clegg, D.J. Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J. Steroid Biochem. Mol. Biol. 2010, 122, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The menopause transition and women’s health at midlife: A progress report from the Study of Women’s Health across the Nation (SWAN). Menopause 2019, 26, 1213–1227. [Google Scholar]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Seifert-Klauss, V.; Fillenberg, S.; Schneider, H.; Luppa, P.; Mueller, D.; Kiechle, M. Bone loss in premenopausal, perimenopausal and postmenopausal women: Results of a prospective observational study over 9 years. Climacteric 2012, 15, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Bristow, S.M.; Horne, A.M.; Gamble, G.D.; Mihov, B.; Stewart, A.; Reid, I.R. Dietary Calcium Intake and Bone Loss over 6 Years in Osteopenic Postmenopausal Women. J. Clin. Endocrinol. Metab. 2019, 104, 3576–3584. [Google Scholar] [CrossRef]
- Tang, B.M.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef]
- Boonen, S.; Lips, P.; Bouillon, R.; Bischoff-Ferrari, H.A.; Vanderschueren, D.; Haentjens, P. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: Evidence from a comparative metaanalysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2007, 92, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Shifren, J.L.; Gass, M.L.S. The North American Menopause Society Recommendations for Clinical Care of Midlife Women. Menopause J. N. Am. Menopause Soc. 2014, 21, 1038–1062. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bischoff-Ferrari, H.; Dawson-Hughes, B.; Weaver, C. Nutrition and bone health in women after the menopause. Womens Health 2014, 10, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Daly, R.M.; Dalla Via, J.; Duckham, R.L.; Fraser, S.F.; Helge, E.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. Ther. 2019, 23, 170–180. [Google Scholar] [CrossRef]
- U.S. Departments of Agriculture and Health and Human Services Dietary Guidelines for Americans, 2020–2025. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials (accessed on 9 April 2020).
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Samavat, H.; Dostal, A.M.; Wang, R.; Bedell, S.; Emory, T.H.; Ursin, G.; Torkelson, C.J.; Gross, M.D.; Le, C.T.; Yu, M.C.; et al. The Minnesota Green Tea Trial (MGTT), a randomized controlled trial of the efficacy of green tea extract on biomarkers of breast cancer risk: Study rationale, design, methods, and participant characteristics. Cancer Causes Control 2015, 26, 1405–1419. [Google Scholar] [CrossRef]
- National Institutes of Health—National Institute of Cancer—Division of Cancer Control & Population Background of the Diet History Questionnaire. Available online: https://epi.grants.cancer.gov/dhq/about/ (accessed on 9 April 2020).
- National Institutes of Health—National Institute of Cancer—Division of Cancer Control & Population Diet History Questionnaire II: Calculating Healthy Eating INdex (HEI) Scores Using Diet*Calc Output. Available online: https://epi.grants.cancer.gov/dhq2/dietcalc/output.html (accessed on 25 February 2021).
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Tabung, F.K.; Steck, S.E.; Ma, Y.; Liese, A.D.; Zhang, J.; Caan, B.; Hou, L.; Johnson, K.C.; Mossavar-Rahmani, Y.; Shivappa, N.; et al. The association between dietary inflammatory index and risk of colorectal cancer among postmenopausal women: Results from the Women’s Health Initiative. Cancer Causes Control 2015, 26, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Duggan, C.; Tapsoba, J.d.D.; Shivappa, N.; Harris, H.R.; Hébert, J.R.; Wang, C.-Y.; McTiernan, A. Changes in Dietary Inflammatory Index Patterns with Weight Loss in Women: A Randomized Controlled Trial. Cancer Prev. Res. 2020. [Google Scholar] [CrossRef]
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group [Meeting Held in Rome from 22 to 25 June 1992]; World Health Organization: Geneva, Switzerland, 25 June 1994. [Google Scholar]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Body mass index, waist circumference, and health risk: Evidence in support of current National Institutes of Health guidelines. Arch. Intern. Med. 2002, 162, 2074–2079. [Google Scholar] [CrossRef] [Green Version]
- Food and Nutrition Service—U.S. Department of Agriculture Healthy Eating Index. Available online: https://www.fns.usda.gov/hei-scores-americans (accessed on 17 April 2021).
- Cosman, F.; De Beur, S.J.; Leboff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.G.; Zeng, X.T.; Wang, J.; Liu, L. Association between calcium or Vitamin D supplementation and fracture incidence in community-dwelling older adults a systematic review and meta-analysis. JAMA 2017, 318, 2466–2482. [Google Scholar] [CrossRef]
- Jackson, R.D.; LaCroix, A.Z.; Gass, M.; Wallace, R.B.; Robbins, J.; Lewis, C.E.; Bassford, T.; Beresford, S.A.A.; Black, H.R.; Blanchette, P.; et al. Calcium plus Vitamin D Supplementation and the Risk of Fractures. N. Engl. J. Med. 2006, 354, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women’s health initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Sadeghnia, H.R.; Tabatabaeizadeh, S.A.; Bahrami-Taghanaki, H.; Behboodi, N.; Esmaeili, H.; Ferns, G.A.; Mobarhan, M.G.; Avan, A. Genetic and epigenetic factors influencing vitamin D status. J. Cell. Physiol. 2018, 233, 4033–4043. [Google Scholar] [CrossRef]
- Pourshahidi, L.K. Vitamin D and obesity: Current perspectives and future directions. Proc. Nutr. Soc. 2015, 74, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalo-Encabo, P.; McNeil, J.; Boyne, D.J.; Courneya, K.S.; Friedenreich, C.M. Dose-response effects of exercise on bone mineral density and content in post-menopausal women. Scand. J. Med. Sci. Sport. 2019, 29, 1121–1129. [Google Scholar] [CrossRef]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L.; et al. Construct Validation of the Dietary Inflammatory Index among Postmenopausal Women HHS Public Access Author manuscript. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Aslani, Z.; Sadeghi, O.; Heidari-Beni, M.; Zahedi, H.; Baygi, F.; Shivappa, N.; Hébert, J.R.; Moradi, S.; Sotoudeh, G.; Asayesh, H.; et al. Association of dietary inflammatory potential with cardiometabolic risk factors and diseases: A systematic review and dose–response meta-analysis of observational studies. Diabetol. Metab. Syndr. 2020, 12, 86. [Google Scholar] [CrossRef]
- Orchard, T.; Yildiz, V.; Steck, S.E.; Hébert, J.R.; Ma, Y.; Cauley, J.A.; Li, W.; Mossavar-Rahmani, Y.; Johnson, K.C.; Sattari, M.; et al. Dietary Inflammatory Index, Bone Mineral Density, and Risk of Fracture in Postmenopausal Women: Results From the Women’s Health Initiative. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower dietary inflammatory index scores are associated with lower glycemic index scores among college students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fryar, C.; Carroll, M.; Afful, J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. Available online: https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/obesity-adult.htm#Citation (accessed on 18 April 2021).
- Tai, V.; Leung, W.; Grey, A.; Reid, I.R.; Bolland, M.J. Calcium intake and bone mineral density: Systematic review and meta-analysis. BMJ 2015, 351, h4183. [Google Scholar] [CrossRef] [Green Version]
Characteristic | N | Mean (SD) or Frequency (%) | (Min–Max) |
---|---|---|---|
Age (years) | 937 | 59.8 (5.0) | (50.1–71.2) |
Years since menopause | 894 | 10.7 (7.4) | (1.0–40.1) |
BMI (kg/m2) | 932 | 25.1 (3.7) | (18.2–43.7) |
Waist circumference (cm) | 935 | 83.6 (10.2) | (60.3–120.5) |
Healthy Eating Index (HEI) | 937 | 72.6 (8.2) | (41.8–92.5) |
Dietary Inflammatory Index (DII) | 937 | 0.002 (2.2) | (−4.5–4.8) |
Glycemic load | 937 | 83.5 (32.8) | (16.4–256.9) |
Protein (g) | 937 | 58.2 (23.2) | (7.7–181.0) |
Calcium from diet (mg) | 937 | 764.5 (352.4) | (87.1–1950.3) |
Calcium from supplements (mg) | 937 | 283.2 (285.6) | (0–714.3) |
Vitamin D from diet (µg) | 937 | 3.33 (2.31) | (0.35–14.12) |
Vitamin D from supplements (µg) | 937 | 3.56 (3.32) | (0–7.14) |
Physical activity | 814 | ||
Less than 4 days/week | 363 (44.6) | ||
4 or more days/week | 451 (55.4) | ||
Education | 937 | ||
Less than college degree | 238 (25.4) | ||
College degree | 420 (44.8) | ||
Graduate/Professional degree | 273 (29.8) | ||
Parity | 931 | ||
No | 218 (23.4) | ||
Yes | 713 (76.6) | ||
Dietary Supplement Use | 937 | ||
No | 115 (12.3) | ||
Yes | 822 (87.7) | ||
Medications | |||
Depression/Anxiety | 934 | 156 (16.7) | |
Blood Pressure | 935 | 187 (20.0) | |
Statins | 935 | 194 (20.7) | |
Anticoagulants | 935 | 253 (27.0) | |
Thyroid | 935 | 162 (17.3) | |
Osteoporosis | 935 | 76 (8.1) |
Variables | HEI Quartiles | |||
---|---|---|---|---|
Q1 (41.8–67.4) | Q2 (67.5–73.2) | Q3 (73.3–78.3) | Q4 (78.4–92.5) | |
DII | 0.90 (0.13) | 0.36 (0.13) | −0.26 (0.13) | −0.99 (0.13) |
p-values 1 | 0.028 | 0.000 | 0.000 | |
Glycemic Load | 86.14 (2.15) | 80.63 (2.14) | 80.84 (2.14) | 86.27 (2.15) |
p-values | NS | NS | ||
WC | 85.89 (0.66) | 84.49 (0.66) | 83.39 (0.66) | 80.73 (0.66) |
p-values | NS | 0.043 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arikawa, A.Y.; Kurzer, M.S. Associations between Diet Quality and Anthropometric Measures in White Postmenopausal Women. Nutrients 2021, 13, 1947. https://doi.org/10.3390/nu13061947
Arikawa AY, Kurzer MS. Associations between Diet Quality and Anthropometric Measures in White Postmenopausal Women. Nutrients. 2021; 13(6):1947. https://doi.org/10.3390/nu13061947
Chicago/Turabian StyleArikawa, Andrea Y., and Mindy S. Kurzer. 2021. "Associations between Diet Quality and Anthropometric Measures in White Postmenopausal Women" Nutrients 13, no. 6: 1947. https://doi.org/10.3390/nu13061947
APA StyleArikawa, A. Y., & Kurzer, M. S. (2021). Associations between Diet Quality and Anthropometric Measures in White Postmenopausal Women. Nutrients, 13(6), 1947. https://doi.org/10.3390/nu13061947