Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = 5-methylfurfural

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2891 KB  
Article
Spectroscopic Study of Volatile Organic Compounds for the Assessment of Coffee Authenticity
by Arianna Elefante, Marilena Giglio, Lavinia Mongelli, Adriana Bux, Andrea Zifarelli, Giansergio Menduni, Pietro Patimisco, Andrea Caratti, Cecilia Cagliero, Erica Liberto, Chiara Cordero, Luciano Navarini, Vincenzo Spagnolo and Angelo Sampaolo
Molecules 2025, 30(17), 3487; https://doi.org/10.3390/molecules30173487 - 25 Aug 2025
Viewed by 956
Abstract
This study aimed at defining the infrared spectral signatures of volatile organic compounds (VOCs) of relevant interest for coffee bean authentication and quality control. Fourier Transform Infrared Spectroscopy was employed to acquire the mid-infrared absorption spectra of some representative coffee markers, namely Pyridine, [...] Read more.
This study aimed at defining the infrared spectral signatures of volatile organic compounds (VOCs) of relevant interest for coffee bean authentication and quality control. Fourier Transform Infrared Spectroscopy was employed to acquire the mid-infrared absorption spectra of some representative coffee markers, namely Pyridine, 2-Methylpyrazine, 2,5-Dimethylpyrazine, Furfural, 5-Methylfurfural and Furfuryl Alcohol, with high resolution of 0.1 cm−1. Mixtures of these VOCs simulating their amount in coffee seeds were analyzed using multilinear regression. The achieved results demonstrate the potentiality of coffee fingerprinting by VOC’s signature in the absorption spectra for discriminating coffee origin. Full article
Show Figures

Figure 1

12 pages, 2901 KB  
Article
Efficient Method for the Synthesis of 5-Methylfurfural from l-Rhamnose Using a Biphasic System
by Zongke He, Pengfei Jiang, Qianqian Cui, Ziyue Wang, Yaozhong Wei, Chao Luo, Jichang Guo, Chang Liu and Wei Zhang
Catalysts 2025, 15(5), 465; https://doi.org/10.3390/catal15050465 - 8 May 2025
Viewed by 766
Abstract
In this work, the method of highly efficient conversion of l-rhamnose to 5-methylfurfural (MF) catalyzed by various catalysts in a biphasic system was developed. To enhance the MF yield, the effects of the catalyst species, reaction temperature (150–180 °C), extraction solvents and [...] Read more.
In this work, the method of highly efficient conversion of l-rhamnose to 5-methylfurfural (MF) catalyzed by various catalysts in a biphasic system was developed. To enhance the MF yield, the effects of the catalyst species, reaction temperature (150–180 °C), extraction solvents and volume ratio of the extraction to the aqueous phase (0–5) on the conversion of l-rhamnose to MF were systematically investigated. Under optimal conditions, a high MF yield of 94% was achieved in the biphasic “diisopropyl ether (DIPE) + H2O” system due to the fact that the extraction of MF to the DIPE phase significantly inhibits the condensation and degradation of MF in water. Finally, detailed reaction energetics and chemical structures of intermediates of the l-rhamnose dehydration to MF were investigated using the B3LYP level of theory and the SMD solvation model. It is evident that MF, which exhibits excellent chemical stability, harbors the potential to function as a bio-derived platform chemical within the domain of the green industry. Full article
Show Figures

Graphical abstract

15 pages, 5602 KB  
Article
Analysis of Different Strains Fermented Douchi by GC×GC-TOFMS and UPLC–Q-TOFMS Omics Analysis
by Liqiang Sui, Sugui Wang, Xin Wang, Lingling Su, Huilong Xu, Wei Xu, Lixia Chen and Hua Li
Foods 2024, 13(21), 3521; https://doi.org/10.3390/foods13213521 - 4 Nov 2024
Cited by 2 | Viewed by 1573
Abstract
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. [...] Read more.
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. The common and characteristic flavor compounds and common and characteristic non-volatile components of different strains of fermented Douchi were explored through GC×GC-TOFMS and UPLC–Q-TOFMS omics analysis. The result suggested that Pyrazines, ketones, and alkenes such as tetramethyl-pyrazine, 2,5-dimethyl pyrazine, furaneol, 2,3-butanedione, gamma-terpinene might contribute to the basic flavor of the Douchi fermented by A. niger, R. arrhizus, and B. circulans. Peptides, amines, and flavonoids, such as N–acetylhistamine, 7,3′,4′–trihydroxyflavone, (3S,8As)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione might contribute to the basic function of the above three Douchi. The common metabolic pathways involved in the fermentation were isoflavonoid biosynthesis, flavonoid biosynthesis, etc. Ketones and esters such as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 3-octanone, 5-methylfurfural and nonanal contributed to the unique flavor, while betaine, oleanolic acid, saikosaponin D and leucine might contribute to the unique function of A. niger fermented Douchi. Alkenes, pyrazine, and ketones such as α-terpinene, ethyl-pyrazine, dihydro-3-methyl-2(3H)-furanone, and linalool might contribute to unique flavor, while cordycepin, 2-Phenylacetamide might contributed to the unique function of R. arrhizus fermented Douchi. The unique flavor of B. circulans fermented Douchi might derived from ketones and esters such as 3-acetyl-2-butanone, 2-tridecanone, propionic acid-2-phenylethyl ester, while vitexin, astragalin, and phenethylamine might contribute to the unique function. Compared with single-strain fermented Douchi, the flavor substances and non-volatile components in multi-strain fermented Douchi were more abundant, such as hexadecanoic acid methyl ester, benzeneacetic acid ethyl ester, 9,12-octadecadienoic acid ethyl ester, nuciferine, and erucamide. It was speculated that there were common and differential substances in Douchi fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, which might contribute to the basic and unique flavor and function. Compared with single-strain fermented Douchi, the flavor substances and metabolites in multi-strain fermented Douchi were more abundant. This study provided a reference for the research of flavor and functional substances of Douchi. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

13 pages, 1148 KB  
Article
Volatile Organic Compounds (VOCs) in Mediterranean Oak Forests of Hungarian Oak (Quercus frainetto Ten) Affected by Dieback Phenomena
by Marisabel Mecca, Luigi Todaro, Maurizio D’Auria, Santain Settimio Pino Italiano, Adriano Sofo and Francesco Ripullone
Forests 2024, 15(6), 1072; https://doi.org/10.3390/f15061072 - 20 Jun 2024
Viewed by 1824
Abstract
In recent years, long periods of drought and heat waves have become increasingly frequent, causing forest dieback phenomena that make stands more sensitive to biotic stressors. How trees may respond to extreme climatic events and which metabolites are involved under stress conditions is [...] Read more.
In recent years, long periods of drought and heat waves have become increasingly frequent, causing forest dieback phenomena that make stands more sensitive to biotic stressors. How trees may respond to extreme climatic events and which metabolites are involved under stress conditions is still not clear. In this study, using Solid Phase Micro-Extraction (SPME)-GC/MS, we analysed how dieback (D) and non-dieback (ND) Hungarian oak trees from the San Paolo Albanese site respond to these climatic dynamics, focusing on volatile organic compounds (VOCs). For each group of trees, three wood samples were taken, and each was divided into four sub-samples with five growth rings and subjected to SPME and increase in basal area (BAI) analysis of the last 20 years. Dieback trees had a lower number of leaves, and this condition may translate into less photosynthesis, less organic matter production, and lower reserves of carbohydrates being available for growth. Indeed, D trees showed lower radial increases and a lower content of aldehydes, terpenes, and fatty acids than ND trees, indicating a better health of ND trees compared to D trees. Meanwhile, D trees showed a reduction in terpenes, such as α-pinene, γ-eudesmol, and cyperene (with significant insecticidal activity), a reduction in aromatic aldehydes, such as furfural and 5-methylfurfural, and an increase in silanols (with antimicrobial function). Considering the different compounds’ contents between D and ND trees, our study could be useful for detecting bio-indicators to identify an early warning signal of dieback phenomena. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

17 pages, 3262 KB  
Article
Investigating the Effects of Distillation System, Geographical Origin, and Aging Time on Aroma Characteristics in Brandy Using an Untargeted Metabonomic Approach
by Ruiqi Hu, Changqing Duan and Yibin Lan
Foods 2024, 13(12), 1922; https://doi.org/10.3390/foods13121922 - 18 Jun 2024
Cited by 4 | Viewed by 1950
Abstract
In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and [...] Read more.
In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and geographical origins. Through the predictive ability of PLS-DA models, it was found that higher alcohols, C13-norisopenoids, and furans could serve as key markers to discriminate between continuous stills and pot stills, and the contents of C6/C9 compounds, C13-norisoprenoids, and sesquiterpenoids were significantly affected by brandy origin. A network analysis illustrated that straight-chain fatty acid ethyl esters gradually accumulated during aging, and several higher alcohols, furfural, 5-methylfurfural, 4-ethylphenol, TDN, β-damascenone, naphthalene, styrene, and decanal were also positively correlated with aging time. This study provides effective methods for distinguishing brandies collected from different distillation systems and geographical origins and summarizes an overview of the changes in volatile compounds during the aging process. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

14 pages, 1763 KB  
Article
Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood
by Ofélia Anjos, Carlos A. L. Antunes, Sheila Oliveira-Alves, Sara Canas and Ilda Caldeira
Fermentation 2024, 10(5), 253; https://doi.org/10.3390/fermentation10050253 - 13 May 2024
Viewed by 1913
Abstract
There is a trend towards the commercialisation of strawberry tree fruit spirit (AUS) with wood ageing, motivated by its favourable sensory characteristics. Additionally, further studies are necessary to elucidate the optimal conditions regarding ageing time and toasting level. This study evaluated the changes [...] Read more.
There is a trend towards the commercialisation of strawberry tree fruit spirit (AUS) with wood ageing, motivated by its favourable sensory characteristics. Additionally, further studies are necessary to elucidate the optimal conditions regarding ageing time and toasting level. This study evaluated the changes in colour and low molecular weight compounds (LMWC) of AUS aged for three and six months using oak wood (Quercus robur L.) with light, medium and medium plus toasting levels. For this purpose, phenolic acids (gallic, ellagic, ferulic and syringic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic aldehydes (furfural, 5-hydroxymethylfurfural and 5-methylfurfural) were quantified using the HPLC method. Chromatic characteristics, colour sensory analysis and total polyphenol index were also analysed. Fourier transform near-infrared spectroscopy (FT-NIR) was used to discriminate between samples. The results emphasized the favourable effect of oak wood contact on enhancing the colour and enriching AUS with low molecular weight compounds (LMWC). AUS aged in medium toasted wood exhibits high levels of total phenolic index, 5-hydroxymethylfurfural, furfural, coniferaldehyde, sinapaldehyde, sum LMWC and chromatic characteristics b* and C. Concentrations of syringaldehyde, ellagic acid, vanillin and syringic acid and a lighter colour (a* chromaticity coordinates) are higher in AUS aged with slightly more toasted wood. Nearly all analysed parameters showed an increase with ageing time. The FT-NIR technique allowed for the differentiation of aged AUS, focusing more on ageing time than on toasting level. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

26 pages, 6681 KB  
Review
Production and Synthetic Possibilities of 5-Chloromethylfurfural as Alternative Biobased Furan
by Dominik Soukup-Carne, Felipe Sanchez Bragagnolo, Cristiano Soleo Funari and Jesús Esteban
Catalysts 2024, 14(2), 117; https://doi.org/10.3390/catal14020117 - 1 Feb 2024
Cited by 7 | Viewed by 4031
Abstract
As fossil-based resource depletion intensifies and the use of lignocellulosic biomass gains more and more momentum for the development of biorefineries, the production of furans has received a great deal of attention considering their outstanding synthetic possibilities. The production of 5-hydroxymethylfurfural (HMF) is [...] Read more.
As fossil-based resource depletion intensifies and the use of lignocellulosic biomass gains more and more momentum for the development of biorefineries, the production of furans has received a great deal of attention considering their outstanding synthetic possibilities. The production of 5-hydroxymethylfurfural (HMF) is quite established in the recent scientific literature, with a large number of studies having been published in the last few years. Lately, there has been a growing interest in the synthesis of 5-chloromethylfurfural (CMF) as a novel building block of similar molecular structure to that of HMF. CMF has some advantages, such as its production taking place at milder reaction conditions, a lower polarity that enables easier separation with the aid of organic media, and the presence of chlorine as a better leaving group in synthesis. Precisely the latter aspect has given rise to several interesting products to be obtained therefrom, including 2,5-dimethylfuran, 2,5-furandicarboxylic acid, and 5-methylfurfural, to name a few. This work covers the most relevant aspects related to the production of CMF and an array of synthetic possibilities. Through varied catalysts and reaction conditions, value-added products can be obtained from this chemical, thus highlighting the advances in the production and use of this chemical in recent years. Full article
Show Figures

Graphical abstract

16 pages, 1424 KB  
Article
Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac
by Yue Ma, Yuanyi Li, Baochun Zhang, Chunhua Shen, Lina Yu, Yan Xu and Ke Tang
Foods 2024, 13(1), 27; https://doi.org/10.3390/foods13010027 - 20 Dec 2023
Cited by 3 | Viewed by 1692
Abstract
This work aimed to compare the aroma characteristics of representative brandies with different grades from Yantai (one of the Chinese core production areas) and Cognac and to establish relationships between sensory descriptors and chemical composition. Descriptive analysis was performed with a trained panel [...] Read more.
This work aimed to compare the aroma characteristics of representative brandies with different grades from Yantai (one of the Chinese core production areas) and Cognac and to establish relationships between sensory descriptors and chemical composition. Descriptive analysis was performed with a trained panel to obtain the sensory profiles. Forty-three aroma-active compounds were quantified by four different methodologies. A prediction model on the basis of partial least squares analysis was performed to identify candidate compounds that were unique to a certain group of brandies. The result showed that brandies from Yantai could be distinguished from Cognac brandies on the basis of spicy, dried fruit, floral, and fruity-like aromas, which were associated with an aromatic balance between concentrations of a set of compounds such as 5-methylfurfural, γ-nonalactone, and γ-dodecalactone. Meanwhile, brandy with different grades could be distinguished on the basis of compounds derived mostly during the aging process. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

12 pages, 1791 KB  
Article
Elsholtzia ciliata Essential Oil Exhibits a Smooth Muscle Relaxant Effect
by Irma Martišienė, Vilma Zigmantaitė, Lauryna Pudžiuvelytė, Jurga Bernatonienė and Jonas Jurevičius
Pharmaceuticals 2023, 16(10), 1464; https://doi.org/10.3390/ph16101464 - 15 Oct 2023
Cited by 2 | Viewed by 2372
Abstract
A recent in vivo study in pigs demonstrated the hypotensive properties of essential oil extracted from the blossoming plant Elsholtzia ciliata. This study was designed to examine the effect of E. ciliata essential oil (EO) on smooth muscle contraction. Tension measurements were [...] Read more.
A recent in vivo study in pigs demonstrated the hypotensive properties of essential oil extracted from the blossoming plant Elsholtzia ciliata. This study was designed to examine the effect of E. ciliata essential oil (EO) on smooth muscle contraction. Tension measurements were performed on prostate strips and intact aortic rings isolated from rats. Results showed that EO caused a concentration-dependent reduction in phenylephrine-induced contraction of both the prostate and aorta, with a more pronounced inhibitory effect in the prostate. The IC50 of EO for the prostate was 0.24 ± 0.03 µL/mL (n = 10) and for the aorta was 0.72 ± 0.11 µL/mL (n = 4, p < 0.05 vs. prostate). The chromatographic analysis identified elsholtzia ketone (10.64%) and dehydroelsholtzia ketone (86.23%) as the predominant compounds in the tested EO. Since both compounds feature a furan ring within their molecular structure, other furan ring-containing compounds, 2-acetylfuran (2AF) and 5-methylfurfural (5MFF), were examined. For the first time, our study demonstrated the relaxant effects of 2AF and 5MFF on smooth muscles. Further, results showed that EO, 2AF, and 5MFF altered the responsiveness of prostate smooth muscle cells to phenylephrine. Under control conditions, the EC50 of phenylephrine was 0.18 ± 0.03 µM (n = 5), while in the presence of EO, 2AF, or 5MFF, the EC50 values were 0.81 ± 0.3 µM (n = 5), 0.89 ± 0.11 µM (n = 5), and 0.69 ± 0.23 µM (n = 4), respectively, p < 0.05 vs. control. Analysis of the affinity of EO for α1-adrenergic receptors in the prostate suggested that EO at a certain range of concentrations has a competitive antagonistic effect on α1-adrenergic receptors. In conclusion, EO elicits a relaxant effect on smooth muscles which may be related to the inhibition of α1-adrenoreceptors. Full article
Show Figures

Figure 1

12 pages, 3077 KB  
Article
Evaluation of Organofunctionalized Polydimethylsiloxane Films for the Extraction of Furanic Compounds
by Yamile Pérez-Padilla, Manuel Aguilar-Vega, Erbin Guillermo Uc-Cayetano, Adriana Esparza-Ruiz, Marcial Alfredo Yam-Cervantes and David Muñoz-Rodríguez
Polymers 2023, 15(13), 2851; https://doi.org/10.3390/polym15132851 - 28 Jun 2023
Viewed by 1604
Abstract
Hybrid membranes with three different thicknesses, PMDS_C1, PMDS_C2, and PMDS_C3 (0.21 ± 0.03 mm, 0.31 ± 0.05 mm, and 0.48 ± 0.07 mm), were synthesized by the sol–gel method using polydimethylsiloxane, hydroxy-terminated, and cyanopropyltriethoxysilane. The presence of cyano, methyl, and silicon-methyl groups was [...] Read more.
Hybrid membranes with three different thicknesses, PMDS_C1, PMDS_C2, and PMDS_C3 (0.21 ± 0.03 mm, 0.31 ± 0.05 mm, and 0.48 ± 0.07 mm), were synthesized by the sol–gel method using polydimethylsiloxane, hydroxy-terminated, and cyanopropyltriethoxysilane. The presence of cyano, methyl, and silicon-methyl groups was confirmed by FTIR analysis. Contact angle analysis revealed the membranes’ hydrophilic nature. Solvent resistance tests conducted under vortex and ultrasonic treatments (45 and 60 min) demonstrated a preference order of acetonitrile > methanol > water. Furthermore, the membranes exhibited stability over 48 h when exposed to different pH conditions (1, 3, 6, and 9), with negligible mass losses below 1%. The thermogravimetric analysis showed that the material was stable until 400 °C. Finally, the sorption analysis showed its capacity to detect furfural, 2-furylmethylketone, 5-methylfurfural, and 2-methyl 2-furoate. The thicker membrane was able to adsorb and slightly desorb a higher concentration of furanic compounds due to its high polarity provided by the addition of the cyano groups. The results indicated that the membranes may be suitable for sorbent materials in extracting and enriching organic compounds. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Processing)
Show Figures

Graphical abstract

20 pages, 338 KB  
Article
Study of Brewer’s Spent Grain Environmentally Friendly Processing Ways
by Konstantin V. Kobelev, Irina N. Gribkova, Larisa N. Kharlamova, Armen V. Danilyan, Maxim A. Zakharov, Irina V. Lazareva, Valery I. Kozlov and Olga A. Borisenko
Molecules 2023, 28(11), 4553; https://doi.org/10.3390/molecules28114553 - 5 Jun 2023
Cited by 4 | Viewed by 2410
Abstract
Background: This article is devoted to the study of the effect of electrochemically activated water (catholyte with pH 9.3) on organic compounds of the plant matrix of brewer’s spent grain in order to extract various compounds from it. Methods: Brewer’s spent grain was [...] Read more.
Background: This article is devoted to the study of the effect of electrochemically activated water (catholyte with pH 9.3) on organic compounds of the plant matrix of brewer’s spent grain in order to extract various compounds from it. Methods: Brewer’s spent grain was obtained from barley malt at a pilot plant by mashing the malt followed by filtration and washing of the grain in water and storing it at (0 ± 2) °C in craft bags. For the organic compound quantitative determination, instrumental methods of analysis (HPLC) were used, and the results were subjected to mathematical analysis. Results: The study results showed that at atmospheric pressure, the alkaline properties of the catholyte showed better results compared to aqueous extraction with respect to β-glucan, sugars, nitrogenous and phenolic compounds, and 120 min was the best period for extraction at 50 °C. The excess pressure conditions used (0.5 ÷ 1 atm) revealed an increase in the accumulation of non-starch polysaccharide and nitrogenous compounds, while the level of sugars, furan and phenolic compounds decreased with increasing treatment duration. The waste grain extract ultrasonic treatment used revealed the effectiveness of catholyte in relation to the extraction of β-glucan and nitrogenous fractions; however, sugars and phenolic compounds did not significantly accumulate. The correlation method made it possible to reveal the regularities in the formation of furan compounds under the conditions of extraction with the catholyte: Syringic acid had the greatest effect on the formation of 5-OH-methylfurfural at atmospheric pressure and 50 °C and vanillic acid under conditions of excess pressure. Regarding furfural and 5-methylfurfural, amino acids had a direct effect at excess pressure. It was shown that the content of all furan compounds depends on amino acids with thiol groups and gallic acid; the formation of 5-hydroxymethylfurfural and 5-methylfurfural is influenced by gallic and vanillic acids; the release of furfural and 5-methylfurfural is determined by amino acids and gallic acid; excess pressure conditions promote the formation of furan compounds under the action of gallic and lilac acids. Conclusions: This study showed that a catholyte allows for efficient extraction of carbohydrate, nitrogenous and monophenolic compounds under pressure conditions, while flavonoids require a reduction in extraction time under pressure conditions. Full article
19 pages, 10896 KB  
Article
Survival of Nematode Larvae Strongyloides papillosus and Haemonchus contortus under the Influence of Various Groups of Organic Compounds
by Olexandra Boyko and Viktor Brygadyrenko
Diversity 2023, 15(2), 254; https://doi.org/10.3390/d15020254 - 11 Feb 2023
Cited by 9 | Viewed by 2447
Abstract
Many chemically synthesized xenobiotics can significantly inhibit the vitality of parasitic nematodes. However, there is yet too little research on the toxicity of such contaminating compounds toward nematodes. Compounds that are present in plants are able to inhibit the vitality of parasitic organisms [...] Read more.
Many chemically synthesized xenobiotics can significantly inhibit the vitality of parasitic nematodes. However, there is yet too little research on the toxicity of such contaminating compounds toward nematodes. Compounds that are present in plants are able to inhibit the vitality of parasitic organisms as well. According to the results of our laboratory studies of toxicity, the following xenobiotics caused no decrease in the vitality of the larvae of Strongyloides papillosus and Haemonchus contortus: methanol, propan-2-ol, propylene glycol-1,2, octadecanol-1, 4-methyl-2-pen-tanol, 2-ethoxyethanol, butyl glycol, 2-pentanone, cyclopentanol, ortho-dimethylbenzene, dibutyl phthalate, succinic anhydride, 2-methylfuran, 2-methyl-5-nitroimidazole. Strong toxicity towards the nematode larvae was exerted by glutaraldehyde, 1,4-diethyl 2-methyl-3-oxobutanedioate, hexylamine, diethyl malonate, allyl acetoacetate, tert butyl carboxylic acid, butyl acrylate, 3-methyl-2-butanone, isobutyraldehyde, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, 3-methylbutanal, cyclohexanol, cyclooctanone, phenol, pyrocatechin, resorcinol, naphthol-2, phenyl ether, piperonyl alcohol, 3-furoic acid, maleic anhydrid, 5-methylfurfural, thioacetic acid, butan-1-amine, dimethylformamide, 1-phenylethan-1-amine, 3-aminobenzoic acid. Widespread natural compounds (phytol, 3-hydroxy-2-butanone, maleic acid, oleic acid, hydroquinone, gallic acid-1-hydrate, taurine, 6-aminocaproic acid, glutamic acid, carnitine, ornithine monohydrochloride) had no negative effect on the larvae of S. papillosus and H. contortus. A powerful decrease in the vitality of nematode larvae was produced by 3,7-dimethyl-6-octenoic acid, isovaleric acid, glycolic acid, 2-oxopentanedioic acid, 2-methylbutanoic acid, anisole, 4-hydroxy-3-methoxybenzyl alcohol, furfuryl alcohol. The results of our studies allow us to consider 28 of the 62 compounds we studied as promising for further research on anti-nematode activity in manufacturing conditions. Full article
(This article belongs to the Section Animal Diversity)
11 pages, 1300 KB  
Article
Occurrence of Furfural and Its Derivatives in Coffee Products in China and Estimation of Dietary Intake
by Qing Liu, Pingping Zhou, Pengjie Luo and Pinggu Wu
Foods 2023, 12(1), 200; https://doi.org/10.3390/foods12010200 - 2 Jan 2023
Cited by 19 | Viewed by 4832
Abstract
This is the first report on the content of furfural and its derivatives in coffee products in China. The concentrations of furfural and its derivatives in 449 sampled, commercially available coffee products in China were analyzed through a GC-MS technique, and the associated [...] Read more.
This is the first report on the content of furfural and its derivatives in coffee products in China. The concentrations of furfural and its derivatives in 449 sampled, commercially available coffee products in China were analyzed through a GC-MS technique, and the associated health risks were estimated. As a result, 5-hydroxymethyl furfural (5-HMF) was identified as the predominant derivative compound, with the highest concentration of 6035.0 mg/kg and detection frequency of 98.7%. The mean dietary exposures of 5-HMF, 5-MF(5-methylfurfural), and 2-F(2-furfural) in coffee products among Chinese consumers were 55.65, 3.00, and 3.23 μg/kg bw/day, respectively. The ranges of mean dietary intake of furfural and its derivatives based on age groups were all lower than the acceptable daily intake (ADI) and the toxicological concern threshold (TTC). Risk evaluation results indicate that coffee product intake did not pose potential risks to consumers. Notably, the analysis revealed that children aged 3–6 years had the highest mean exposure due to their low body weight. Full article
Show Figures

Graphical abstract

11 pages, 706 KB  
Communication
The Impact of Storage Conditions and Bottle Orientation on the Evolution of Phenolic and Volatile Compounds of Vintage Port Wine
by Joana Azevedo, Joana Pinto, Natércia Teixeira, Joana Oliveira, Miguel Cabral, Paula Guedes de Pinho, Paulo Lopes, Nuno Mateus and Victor de Freitas
Foods 2022, 11(18), 2770; https://doi.org/10.3390/foods11182770 - 8 Sep 2022
Cited by 6 | Viewed by 2470
Abstract
This work evaluates the influence of the cellar conditions and bottle orientation, on the phenolic and volatile composition of a Vintage Port wine, sealed with natural cork stoppers, for 44 months post-bottling. The storage was performed in two different cellars, namely a cellar [...] Read more.
This work evaluates the influence of the cellar conditions and bottle orientation, on the phenolic and volatile composition of a Vintage Port wine, sealed with natural cork stoppers, for 44 months post-bottling. The storage was performed in two different cellars, namely a cellar A with controlled temperature and humidity, and a cellar B, representing a traditional cellar, with uncontrolled temperature and humidity. The impact of bottle orientation was studied in cellar A, where the bottles were stored in horizontal and vertical positions. The phenolic and volatile composition of the bottled Vintage Port wine were analyzed after 6, 15 and 44 months. The results unveiled that the cellar conditions and bottle orientation had an impact in Port wine composition which was higher at 44 months post-bottling. The samples stored in the traditional cellar unveiled significantly higher yellow tones, lower tannin specific activity, and higher levels of furfural and 5-methylfurfural. Furthermore, the samples stored in the horizontal position revealed significant higher levels of total proanthocyanidins and higher tannin specific activity than the samples stored in the vertical position. Interestingly, for the first time to our knowledge, an ellagitannin-derived compound (Corklin) was detected in Vintage Port wines stored in the horizontal position, which results from the reaction of cork constituents with phenolic compounds present in wines. Full article
(This article belongs to the Special Issue Phenolic Compounds, Aroma Compounds and Sensory Profile of Wine)
Show Figures

Figure 1

14 pages, 2250 KB  
Article
Impact of Bentonite Clay on In Situ Pyrolysis vs. Hydrothermal Carbonization of Avocado Pit Biomass
by Madeline Karod, Zoe A. Pollard, Maisha T. Ahmad, Guolan Dou, Lihui Gao and Jillian L. Goldfarb
Catalysts 2022, 12(6), 655; https://doi.org/10.3390/catal12060655 - 15 Jun 2022
Cited by 13 | Viewed by 4359
Abstract
Biofuels produced via thermochemical conversions of waste biomass could be sustainable alternatives to fossil fuels but currently require costly downstream upgrading to be used in existing infrastructure. In this work, we explore how a low-cost, abundant clay mineral, bentonite, could serve as an [...] Read more.
Biofuels produced via thermochemical conversions of waste biomass could be sustainable alternatives to fossil fuels but currently require costly downstream upgrading to be used in existing infrastructure. In this work, we explore how a low-cost, abundant clay mineral, bentonite, could serve as an in situ heterogeneous catalyst for two different thermochemical conversion processes: pyrolysis and hydrothermal carbonization (HTC). Avocado pits were combined with 20 wt% bentonite clay and were pyrolyzed at 600 °C and hydrothermally carbonized at 250 °C, commonly used conditions across the literature. During pyrolysis, bentonite clay promoted Diels–Alder reactions that transformed furans to aromatic compounds, which decreased the bio-oil oxygen content and produced a fuel closer to being suitable for existing infrastructure. The HTC bio-oil without the clay catalyst contained 100% furans, mainly 5-methylfurfural, but in the presence of the clay, approximately 25% of the bio-oil was transformed to 2-methyl-2-cyclopentenone, thereby adding two hydrogen atoms and removing one oxygen. The use of clay in both processes decreased the relative oxygen content of the bio-oils. Proximate analysis of the resulting chars showed an increase in fixed carbon (FC) and a decrease in volatile matter (VM) with clay inclusion. By containing more FC, the HTC-derived char may be more stable than pyrolysis-derived char for environmental applications. The addition of bentonite clay to both processes did not produce significantly different bio-oil yields, such that by adding a clay catalyst, a more valuable bio-oil was produced without reducing the amount of bio-oil recovered. Full article
Show Figures

Graphical abstract

Back to TopTop