Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = 5G-multi-UAV systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13244 KB  
Article
MWR-Net: An Edge-Oriented Lightweight Framework for Image Restoration in Single-Lens Infrared Computational Imaging
by Xuanyu Qian, Xuquan Wang, Yujie Xing, Guishuo Yang, Xiong Dun, Zhanshan Wang and Xinbin Cheng
Remote Sens. 2025, 17(17), 3005; https://doi.org/10.3390/rs17173005 - 29 Aug 2025
Viewed by 376
Abstract
Infrared video imaging is an cornerstone technology for environmental perception, particularly in drone-based remote sensing applications such as disaster assessment and infrastructure inspection. Conventional systems, however, rely on bulky optical architectures that limit deployment on lightweight aerial platforms. Computational imaging offers a promising [...] Read more.
Infrared video imaging is an cornerstone technology for environmental perception, particularly in drone-based remote sensing applications such as disaster assessment and infrastructure inspection. Conventional systems, however, rely on bulky optical architectures that limit deployment on lightweight aerial platforms. Computational imaging offers a promising alternative by integrating optical encoding with algorithmic reconstruction, enabling compact hardware while maintaining imaging performance comparable to sophisticated multi-lens systems. Nonetheless, achieving real-time video-rate computational image restoration on resource-constrained unmanned aerial vehicles (UAVs) remains a critical challenge. To address this, we propose Mobile Wavelet Restoration-Net (MWR-Net), a lightweight deep learning framework tailored for real-time infrared image restoration. Built on a MobileNetV4 backbone, MWR-Net leverages depthwise separable convolutions and an optimized downsampling scheme to minimize parameters and computational overhead. A novel wavelet-domain loss enhances high-frequency detail recovery, while the modulation transfer function (MTF) is adopted as an optics-aware evaluation metric. With only 666.37 K parameters and 6.17 G MACs, MWR-Net achieves a PSNR of 37.10 dB and an SSIM of 0.964 on a custom dataset, outperforming a pruned U-Net baseline. Deployed on an RK3588 chip, it runs at 42 FPS. These results demonstrate MWR-Net’s potential as an efficient and practical solution for UAV-based infrared sensing applications. Full article
Show Figures

Figure 1

24 pages, 11770 KB  
Article
Secure Communication and Resource Allocation in Double-RIS Cooperative-Aided UAV-MEC Networks
by Xi Hu, Hongchao Zhao, Dongyang He and Wujie Zhang
Drones 2025, 9(8), 587; https://doi.org/10.3390/drones9080587 - 19 Aug 2025
Viewed by 380
Abstract
In complex urban wireless environments, unmanned aerial vehicle–mobile edge computing (UAV-MEC) systems face challenges like link blockage and single-antenna eavesdropping threats. The traditional single reconfigurable intelligent surface (RIS), limited in collaboration, struggles to address these issues. This paper proposes a double-RIS cooperative UAV-MEC [...] Read more.
In complex urban wireless environments, unmanned aerial vehicle–mobile edge computing (UAV-MEC) systems face challenges like link blockage and single-antenna eavesdropping threats. The traditional single reconfigurable intelligent surface (RIS), limited in collaboration, struggles to address these issues. This paper proposes a double-RIS cooperative UAV-MEC optimization scheme, leveraging their joint reflection to build multi-dimensional signal paths, boosting legitimate link gains while suppressing eavesdropping channels. It considers double-RIS phase shifts, ground user (GU) transmission power, UAV trajectories, resource allocation, and receiving beamforming, aiming to maximize secure energy efficiency (EE) while ensuring long-term stability of GU and UAV task queues. Given random task arrivals and high-dimensional variable coupling, a dynamic model integrating queue stability and secure transmission constraints is built using Lyapunov optimization, transforming long-term stochastic optimization into slot-by-slot deterministic decisions via the drift-plus-penalty method. To handle high-dimensional continuous spaces, an end-to-end proximal policy optimization (PPO) framework is designed for online learning of multi-dimensional resource allocation and direct acquisition of joint optimization strategies. Simulation results show that compared with benchmark schemes (e.g., single RIS, non-cooperative double RIS) and reinforcement learning algorithms (e.g., advantage actor–critic (A2C), deep deterministic policy gradient (DDPG), deep Q-network (DQN)), the proposed scheme achieves significant improvements in secure EE and queue stability, with faster convergence and better optimization effects, fully verifying its superiority and robustness in complex scenarios. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

29 pages, 5254 KB  
Article
Hydro-Meteorological Landslide Inventory for Sustainable Urban Management in a Coastal Region of Brazil
by Paulo Rodolpho Pereira Hader, Isabela Taici Lopes Gonçalves Horta, Victor Arroyo da Silva do Valle and Clemente Irigaray
Sustainability 2025, 17(16), 7487; https://doi.org/10.3390/su17167487 - 19 Aug 2025
Viewed by 535
Abstract
Comprehensive, standardised, multi-temporal inventories of rainfall-induced landslides linked to soil moisture remain scarce, especially in tropical regions. Addressing this gap, we present a multi-source urban inventory for Brazil’s Baixada Santista region (1988–2024). A key advance is the introduction of geographical and temporal confidence [...] Read more.
Comprehensive, standardised, multi-temporal inventories of rainfall-induced landslides linked to soil moisture remain scarce, especially in tropical regions. Addressing this gap, we present a multi-source urban inventory for Brazil’s Baixada Santista region (1988–2024). A key advance is the introduction of geographical and temporal confidence classifications, which indicates precisely how each landslide’s location and occurrence date are known, thereby addressing a previously overlooked criterion in Brazil’s landslide data treatment. The inventory comprises 2534 records categorised by spatial (G1–G3) and temporal (T1–T3) confidence. Notable findings include the following: (i) confidence classifications enhance inventory reliability for research and early warning, though precise temporal data remains challenging; (ii) multi-source integration with UAV validation is key to robust inventories in urban tropical regions; (iii) soil moisture complements rainfall-based warnings, but requires local calibration for satellite-derived estimates; (iv) data gaps and biases underscore the need for standardised landslide documentation; and (v) the framework is transferable, providing a scalable model for Brazil and worldwide. Despite limitations, the inventory provides a foundation for (i) susceptibility and hazard modelling; (ii) empirical thresholds for early warning; and (iii) climate-related trend analyses. Overall, the framework offers a sustainable, practical, transferable method for worldwide and contributes to strengthening disaster information systems and early warning capacities. Full article
(This article belongs to the Special Issue Landslide Hazards and Soil Erosion)
Show Figures

Figure 1

22 pages, 3265 KB  
Article
A Novel Multi-Core Parallel Current Differential Sensing Approach for Tethered UAV Power Cable Break Detection
by Ziqiao Chen, Zifeng Luo, Ziyan Wang, Zhou Huang, Yongkang He, Zhiheng Wen, Yuanjun Ding and Zhengwang Xu
Sensors 2025, 25(16), 5112; https://doi.org/10.3390/s25165112 - 18 Aug 2025
Viewed by 371
Abstract
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a [...] Read more.
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a dual innovation: a real-time break detection method and a low-cost multi-core parallel sensing system design based on ACS712 Hall sensors, achieving high detection accuracy (100% with zero false positives in tests). Unlike conventional techniques, the approach leverages current differential (ΔI) monitoring across parallel cores, triggering alarms when ΔI exceeds Irate/2 (e.g., 0.3 A for 0.6 A rated current), corresponding to a voltage deviation ≥ 110 mV (normal baseline ≤ 3 mV). The core innovation lies in the integrated sensing system design: by optimizing the parallel deployment of ACS712 sensors and LMV324-based differential circuits, the solution reduces hardware cost to USD 3 (99.99% lower than fiber optic systems), payload by 18%, and power consumption by 23% compared to traditional methods. Post-fault cable temperatures remain ≤56 °C, ensuring safety margins. The 4-core architecture enhances mean time between failures (MTBF) by 83% over traditional systems, establishing a new paradigm for low-cost, high-reliability sensing systems in terrestrial tethered UAV cable health monitoring. Preliminary theoretical analysis suggests potential extensibility to underwater scenarios with further environmental hardening. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 1563 KB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 672
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

19 pages, 2213 KB  
Article
A Novel UAV-to-Multi-USV Channel Model Incorporating Massive MIMO for 6G Maritime Communications
by Yuyang Zhang, Yi Zhang, Jia Liu, Borui Huang, Hengtai Chang, Yu Liu and Jie Huang
Electronics 2025, 14(13), 2536; https://doi.org/10.3390/electronics14132536 - 23 Jun 2025
Viewed by 506
Abstract
With the advancement of sixth-generation (6G) wireless communication technology, new demands have been placed on maritime communications. In maritime environments, factors such as evaporation ducts and sea waves significantly impact signal transmission. Moreover, in multi-user communication scenarios, interactions between different users introduce additional [...] Read more.
With the advancement of sixth-generation (6G) wireless communication technology, new demands have been placed on maritime communications. In maritime environments, factors such as evaporation ducts and sea waves significantly impact signal transmission. Moreover, in multi-user communication scenarios, interactions between different users introduce additional complexities. This paper proposes a novel channel model for maritime unmanned aerial vehicle (UAV) to multi-unmanned surface vehicle (USV) communications, which incorporates massive multiple-input–multiple-output (MIMO) antennas at both the transmitter (Tx) and receiver (Rx), while also accounting for the effects of evaporation ducts and sea waves on the channel. For the USV-single-user maritime model, the temporal auto-correlation function (ACF) and spatial cross-correlation function (CCF) are analyzed. For the UAV-to-multi-user channel model, key channel characteristics such as channel matrix collinearity (CMC) and channel capacity are examined. Finally, the accuracy and effectiveness of the proposed model are validated through a comparison between the measured and simulated data under a single-link environment. Meanwhile, a comparison between the CMC obtained from the proposed model and that derived from Ray-Tracing further verifies the model’s accuracy in multi-link environments. This model provides essential theoretical guidance for future 6G maritime communication systems. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Wireless Transmissions)
Show Figures

Figure 1

30 pages, 3838 KB  
Review
Overview of Agricultural Machinery Automation Technology for Sustainable Agriculture
by Li Jiang, Boyan Xu, Naveed Husnain and Qi Wang
Agronomy 2025, 15(6), 1471; https://doi.org/10.3390/agronomy15061471 - 16 Jun 2025
Cited by 3 | Viewed by 2818
Abstract
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired [...] Read more.
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired algorithms, and AI-driven data analytics for resource optimization. These technological advancements manifest in significant applications: autonomous field machinery achieving lateral navigation errors below 6 cm, UAVs enabling targeted agrochemical application, reducing pesticide usage by 40%, and smart greenhouses regulating microclimates with ±0.1 °C precision. Collectively, these innovations enhance productivity, optimize resource utilization (water, fertilizers, energy), and mitigate critical labor shortages. However, persistent challenges include technological heterogeneity across diverse agricultural environments, high implementation costs, limitations in adaptability to dynamic field conditions, and adoption barriers, particularly in developing regions. Future progress necessitates prioritizing the development of lightweight edge computing solutions, multi-energy complementary systems (integrating solar, wind, hydropower), distributed collaborative control frameworks, and AI-optimized swarm operations. To democratize these technologies globally, this review synthesizes the evolution of technology and interdisciplinary synergies, concluding with prioritized strategies for advancing agricultural intelligence to align with the Sustainable Development Goals (SDGs) for zero hunger and responsible production. Full article
(This article belongs to the Special Issue Innovations in Agriculture for Sustainable Agro-Systems)
Show Figures

Figure 1

17 pages, 1284 KB  
Article
Entropy-Based Age-Aware Scheduling Strategy for UAV-Assisted IoT Data Transmission
by Lulu Jing, Hai Wang, Zhen Qin and Peng Zhu
Entropy 2025, 27(6), 578; https://doi.org/10.3390/e27060578 - 29 May 2025
Viewed by 579
Abstract
This paper investigates data transmission in an Internet of Things (IoT) network, where multiple devices send environmental data to a remote base station through an unmanned aerial vehicle (UAV) relay. The UAV serves as an airborne intermediary that collects status information from distributed [...] Read more.
This paper investigates data transmission in an Internet of Things (IoT) network, where multiple devices send environmental data to a remote base station through an unmanned aerial vehicle (UAV) relay. The UAV serves as an airborne intermediary that collects status information from distributed IoT devices (e.g., temperature readings in a real-time forest fire monitoring system) and forwards it to the base station. To capture the impact of data staleness, a novel Age of Information (AoI) and entropy-aware system loss is defined in terms of L-conditional cross-entropy, which quantifies the expected penalty caused by state misestimation. The scheduling problem, which aims to minimize the system loss defined by L-conditional cross-entropy, is formulated as a Restless Multi-Armed Bandit (RMAB) problem. By applying Lagrange relaxation, the objective function is decomposed into tractable sub-problems, enabling a low-complexity, gain-index-based scheduling strategy. Numerical simulations validate the effectiveness of the proposed algorithm in reducing the long-term average system loss. In particular, the gain-index-based policy achieves a significant reduction in average penalty compared to random, round-robin, periodic update, and MAX-AoI scheduling strategies, demonstrating its superior performance over these baselines. Full article
Show Figures

Figure 1

16 pages, 4187 KB  
Article
A Proposal for Rapid Assessment of Long-Distance Oil and Gas Pipelines After Earthquakes
by Hongyuan Jing, Liang Huang, Hua Liu, Weijun Jiang, Qinglu Deng and Ruiqing Niu
Appl. Sci. 2025, 15(7), 3595; https://doi.org/10.3390/app15073595 - 25 Mar 2025
Cited by 1 | Viewed by 842
Abstract
A substantial proportion of long-distance oil and gas pipelines in China traverse active faults and high-risk areas characterised by intricate topographic and geological environments. These pipelines are susceptible to a range of safety concerns, exacerbated by the increasing frequency of strong earthquakes in [...] Read more.
A substantial proportion of long-distance oil and gas pipelines in China traverse active faults and high-risk areas characterised by intricate topographic and geological environments. These pipelines are susceptible to a range of safety concerns, exacerbated by the increasing frequency of strong earthquakes in recent years. To address this issue, a comprehensive risk investigation framework has been proposed for long-distance oil and gas pipelines following seismic events. This initiative aims to ensure the safety of pipeline transportation. In this paper, the elements of pipeline safety evaluation under the influence of coseismic hazards are first organized, followed by a construction of post-earthquake pipeline safety rapid assessment theoretical framework based on the seismic geological disaster risk evaluation system. Each method in the system is then introduced one by one. Unlike existing studies that predominantly focus on localized fault activity or static risk assessment, our framework introduces three key innovations: (1) a hierarchical integration of multi-source monitoring data (SCADA, UAV-AI, and numerous monitoring devices) into a unified GIS platform, overcoming the fragmentation of existing systems; (2) a dynamic four-step evaluation process (susceptibility → hazard → risk → safety) that incorporates both pre-earthquake geological conditions and post-earthquake real-time triggers (e.g., PGA, rainfall); (3) a novel risk matrix mechanism for pipeline safety, which dynamically updates risk levels based on field monitoring data rather than relying solely on probabilistic models. This study provides a novel theoretical framework for assessing the safety of pipelines after earthquakes, which can provide a timely basis for pipeline management decisions and reduce the potential damage to pipelines caused by earthquakes. It is important to note that this framework is still in a preliminary stage and needs to be continuously deepened and optimised. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

26 pages, 3506 KB  
Article
Construction and Evaluation of a Cross-Regional and Cross-Year Monitoring Model for Millet Canopy Phenotype Based on UAV Multispectral Remote Sensing
by Peng Zhao, Yuqiao Yan, Shujie Jia, Jie Zhao and Wuping Zhang
Agronomy 2025, 15(4), 789; https://doi.org/10.3390/agronomy15040789 - 24 Mar 2025
Cited by 2 | Viewed by 624
Abstract
Accurate, high-throughput canopy phenotyping using UAV-based multispectral remote sensing is critically important for optimizing the management and breeding of foxtail millet in rainfed regions. This study integrated multi-temporal field measurements of leaf water content, SPAD-derived chlorophyll, and leaf area index (LAI) with UAV [...] Read more.
Accurate, high-throughput canopy phenotyping using UAV-based multispectral remote sensing is critically important for optimizing the management and breeding of foxtail millet in rainfed regions. This study integrated multi-temporal field measurements of leaf water content, SPAD-derived chlorophyll, and leaf area index (LAI) with UAV imagery (red, green, red-edge, and near-infrared bands) across two sites and two consecutive years (2023 and 2024) in Shanxi Province, China. Various modeling approaches, including Random Forest, Gradient Boosting, and regularized regressions (e.g., Ridge and Lasso), were evaluated for cross-regional and cross-year extrapolation. The results showed that single-site modeling achieved coefficients of determination (R2) of up to 0.95, with mean relative errors of 10–15% in independent validations. When models were transferred between sites, R2 generally remained between 0.50 and 0.70, although SPAD estimates exhibited larger deviations under high-nitrogen conditions. Even under severe drought in 2024, cross-year predictions still attained R2 values near 0.60. Among these methods, tree-based models demonstrated a strong capability for capturing nonlinear canopy trait dynamics, whereas regularized regressions offered simplicity and interpretability. Incorporating multi-site and multi-year data further enhanced model robustness, increasing R2 above 0.80 and markedly reducing average prediction errors. These findings demonstrate that rigorous radiometric calibration and appropriate vegetation index selection enable reliable UAV-based phenotyping for foxtail millet in diverse environments and time frames. Thus, the proposed approach provides strong technical support for precision management and cultivar selection in semi-arid foxtail millet production systems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

73 pages, 5355 KB  
Review
Key Enabling Technologies for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless Networks
by Wagdy M. Othman, Abdelhamied A. Ateya, Mohamed E. Nasr, Ammar Muthanna, Mohammed ElAffendi, Andrey Koucheryavy and Azhar A. Hamdi
J. Sens. Actuator Netw. 2025, 14(2), 30; https://doi.org/10.3390/jsan14020030 - 17 Mar 2025
Cited by 5 | Viewed by 8804
Abstract
Sixth-generation (6G) wireless networks have the potential to transform global connectivity by supporting ultra-high data rates, ultra-reliable low latency communication (uRLLC), and intelligent, adaptive networking. To realize this vision, 6G must incorporate groundbreaking technologies that enhance network efficiency, spectral utilization, and dynamic adaptability. [...] Read more.
Sixth-generation (6G) wireless networks have the potential to transform global connectivity by supporting ultra-high data rates, ultra-reliable low latency communication (uRLLC), and intelligent, adaptive networking. To realize this vision, 6G must incorporate groundbreaking technologies that enhance network efficiency, spectral utilization, and dynamic adaptability. Among them, unmanned aerial vehicles (UAVs), terahertz (THz) communication, and intelligent reconfigurable surfaces (IRSs) are three major enablers in redefining the architecture and performance of next-generation wireless systems. This survey provides a comprehensive review of these transformative technologies, exploring their potential, design challenges, and integration into future 6G ecosystems. UAV-based communication provides flexible, on-demand communication in remote, harsh areas and is a vital solution for disasters, self-driving, and industrial automation. THz communication taking place in the 0.1–10 THz band reveals ultra-high bandwidth capable of a data rate of multi-gigabits per second and can avoid spectrum bottlenecks in conventional bands. IRS technology based on programmable metasurface allows real-time wavefront control, maximizing signal propagation and spectral/energy efficiency in complex settings. The work provides architectural evolution, active current research trends, and practical issues in applying these technologies, including their potential contribution to the creation of intelligent, ultra-connected 6G networks. In addition, it presents open research questions, possible answers, and future directions and provides information for academia, industry, and policymakers. Full article
Show Figures

Figure 1

20 pages, 468 KB  
Article
Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration
by Abdullah Alshahrani
Mathematics 2025, 13(5), 871; https://doi.org/10.3390/math13050871 - 5 Mar 2025
Viewed by 1171
Abstract
Multi-access edge computing (MEC) has emerged as a cornerstone technology for deploying 6G network services, offering efficient computation and ultra-low-latency communication. The integration of unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) further enhances wireless propagation, capacity, and coverage, presenting a transformative [...] Read more.
Multi-access edge computing (MEC) has emerged as a cornerstone technology for deploying 6G network services, offering efficient computation and ultra-low-latency communication. The integration of unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) further enhances wireless propagation, capacity, and coverage, presenting a transformative paradigm for next-generation networks. This paper addresses the critical challenge of task offloading and resource allocation in an MEC-based system, where a massive MIMO base station, serving multiple macro-cells, hosts the MEC server with support from a UAV-equipped RIS. We propose an optimization framework to minimize task execution latency for user equipment (UE) by jointly optimizing task offloading and communication resource allocation within this UAV-assisted, RIS-aided network. By modeling this problem as a Markov decision process (MDP) with a discrete-continuous hybrid action space, we develop a deep reinforcement learning (DRL) algorithm leveraging a hybrid space representation to solve it effectively. Extensive simulations validate the superiority of the proposed method, demonstrating significant latency reductions compared to state-of-the-art approaches, thereby advancing the feasibility of MEC in 6G networks. Full article
Show Figures

Figure 1

22 pages, 6642 KB  
Article
Dynamics of Oleo-Pneumatic Landing Gear Systems for Carrier-Based Unmanned Aerial Vehicles
by Ali Dinc, Faruk Yildiz, Junkun Ma, Reg Pecen, Suleiman Obeidat, Ali Mamedov and Murat Otkur
Aerospace 2025, 12(2), 127; https://doi.org/10.3390/aerospace12020127 - 7 Feb 2025
Cited by 1 | Viewed by 2823
Abstract
This paper presents a comprehensive analysis of the dynamics and design of oleo-pneumatic shock absorbers for the landing gear of carrier-based Unmanned Aerial Vehicles (UAVs). Carrier-based operations impose unique challenges due to high-impact landings, necessitating robust landing gear systems capable of withstanding significant [...] Read more.
This paper presents a comprehensive analysis of the dynamics and design of oleo-pneumatic shock absorbers for the landing gear of carrier-based Unmanned Aerial Vehicles (UAVs). Carrier-based operations impose unique challenges due to high-impact landings, necessitating robust landing gear systems capable of withstanding significant g-forces. The study investigates the performance of landing gears designed for carrier operations under various sink rates, utilizing computer simulations to model the dynamics of both sprung and unsprung masses. The design process for an oleo-pneumatic main landing gear of an 8500 kg UAV includes detailed calculations for stroke, shock absorber strut sizing, spring and damping characteristics, and impact force analysis. The research employs both isothermal and adiabatic models to evaluate the variation in pneumatic pressure and air spring force under static and dynamic loadings, revealing the nonlinear behavior of the shock absorber. The damping characteristics are thoroughly analyzed, demonstrating the superior performance of oleo-pneumatic systems in vibration damping. The simulation results confirm that the current design effectively mitigates impact forces, maintaining vertical accelerations within the design constraints and ensuring structural integrity during landing maneuvers. Key findings include the ability of the shock absorber to handle high sink rates typical of carrier-based operations, with calculated vertical accelerations and force values indicating robust performance. The study identifies areas for future research, such as the development of automated loads and stress analysis tools for rapid weight quantification, exploration of active control systems for vibration alleviation, and potential benefits of multi-service applications for landing gear designs. By addressing the challenges of performance and robustness in carrier-based operations, this research advances landing gear technology for UAVs, enhancing their safety and efficiency in various operation environments. The insights gained provide a solid foundation for optimizing landing gear systems, ensuring reliable performance under demanding conditions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 2004 KB  
Article
A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations
by Odysseas Ntousis, Evangelos Makris, Panayiotis Tsanakas and Christos Pavlatos
Technologies 2025, 13(1), 35; https://doi.org/10.3390/technologies13010035 - 16 Jan 2025
Cited by 4 | Viewed by 2335
Abstract
UAVs are widely used for multiple tasks, which in many cases require autonomous processing and decision making. This autonomous function often requires significant computational capabilities that cannot be integrated into the UAV due to weight or cost limitations, making the distribution of the [...] Read more.
UAVs are widely used for multiple tasks, which in many cases require autonomous processing and decision making. This autonomous function often requires significant computational capabilities that cannot be integrated into the UAV due to weight or cost limitations, making the distribution of the workload and the combination of the results produced necessary. In this paper, a dual-stage processing architecture for object detection and tracking in Unmanned Aerial Vehicles (UAVs) is presented, focusing on efficient resource utilization and real-time performance. The proposed system delegates lightweight detection tasks to onboard hardware while offloading computationally intensive processes to a ground server. The UAV is equipped with a Raspberry Pi for onboard data processing, utilizing an Intel Neural Compute Stick 2 (NCS2) for accelerated object detection. Specifically, YOLOv5n is selected as the onboard model. The UAV transmits selected frames to the ground server, which handles advanced tracking, trajectory prediction, and target repositioning using state-of-the-art deep learning models. Communication between the UAV and the server is maintained through a high-speed Wi-Fi link, with a fallback to a 4G connection when needed. The ground server, equipped with an NVIDIA A40 GPU, employs YOLOv8x for object detection and DeepSORT for multi-object tracking. The proposed architecture ensures real-time tracking with minimal latency, making it suitable for mission-critical UAV applications such as surveillance and search and rescue. The results demonstrate the system’s robustness in various environments, highlighting its potential for effective object tracking under limited onboard computational resources. The system achieves recall and accuracy scores as high as 0.53 and 0.74, respectively, using the remote server, and is capable of re-identifying a significant portion of objects of interest lost by the onboard system, measured at approximately 70%. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

23 pages, 10008 KB  
Review
Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress
by Shuanggen Jin, Xuyang Meng, Gino Dardanelli and Yunlong Zhu
Remote Sens. 2024, 16(24), 4800; https://doi.org/10.3390/rs16244800 - 23 Dec 2024
Cited by 1 | Viewed by 2343
Abstract
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have [...] Read more.
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have been widely employed in positioning, navigation, and timing (PNT). Furthermore, GNSS refraction, reflection, and scattering signals can remotely sense the Earth’s surface and atmosphere with powerful implications for environmental remote sensing. In this paper, the recent developments and new application progress of multi-GNSS in Earth observation are presented and reviewed, including the methods of BDS/GNSS for Earth observations, GNSS navigation and positioning performance (e.g., GNSS-PPP and GNSS-NRTK), GNSS ionospheric modelling and space weather monitoring, GNSS meteorology, and GNSS-reflectometry and its applications. For instance, the static Precise Point Positioning (PPP) precision of most MGEX stations was improved by 35.1%, 18.7%, and 8.7% in the east, north, and upward directions, respectively, with PPP ambiguity resolution (AR) based on factor graph optimization. A two-layer ionospheric model was constructed using IGS station data through three-dimensional ionospheric model constraints and TEC accuracy was increased by about 20–27% with the GIM model. Ten-minute water level change with centimeter-level accuracy was estimated with ground-based multiple GNSS-R data based on a weighted iterative least-squares method. Furthermore, a cyclone and its positions were detected by utilizing the GNSS-reflectometry from the space-borne Cyclone GNSS (CYGNSS) mission. Over the years, GNSS has become a dominant technology among Earth observation with powerful applications, not only for conventional positioning, navigation and timing techniques, but also for integrated remote sensing solutions, such as monitoring typhoons, river water level changes, geological geohazard warnings, low-altitude UAV navigation, etc., due to its high performance, low cost, all time and all weather. Full article
Show Figures

Graphical abstract

Back to TopTop