Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = AMPT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11366 KB  
Article
Evaluating Infiltration Methods for the Assessment of Flooding in Urban Areas
by Paola Bianucci, Javier Fernández-Fidalgo, Kay Khaing Kyaw, Enrique Soriano and Luis Mediero
Water 2025, 17(18), 2773; https://doi.org/10.3390/w17182773 - 19 Sep 2025
Viewed by 555
Abstract
Urban flooding caused by short and high-intensity rainfall events presents increasing challenges for cities, threatening infrastructure, public safety and economic activity. Accurately representing infiltration processes in hydrodynamic models is critical, as oversimplifying infiltration can lead to significant errors in predicted flood extents and [...] Read more.
Urban flooding caused by short and high-intensity rainfall events presents increasing challenges for cities, threatening infrastructure, public safety and economic activity. Accurately representing infiltration processes in hydrodynamic models is critical, as oversimplifying infiltration can lead to significant errors in predicted flood extents and water depths. This study systematically compares two widely used infiltration models—Green-Ampt and Curve Number—implemented within two leading 2D hydraulic models, HEC-RAS and IBER, to assess their influence on urban flood predictions. Simulations were conducted for 26 rainfall events, including both observed and synthetic hyetographs, across two urban neighbourhoods in Pamplona metropolitan area, Spain. Model performance was evaluated using root mean square error, mean absolute error and confusion matrix-derived metrics such as precision, accuracy, specificity, sensitivity and negative predictive value. Results indicate that the choice of infiltration method significantly affects both water depths and inundation extents: while Green-Ampt yields more conservative water depth estimates, Curve Number tends to underestimate flood extents. The comparison between the two hydraulic models has shown that IBER simulates broader flood extents and lower water depth errors compared to HEC-RAS. The findings highlight the importance of selecting appropriate infiltration methods and hydraulic models for reliable urban flood risk assessment, as well as providing guidance for model selection in urban inundation studies. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment, 2nd Edition)
Show Figures

Figure 1

10 pages, 21975 KB  
Article
A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei
by Hai-Cheng Wang, Song-Jie Li, Jun Xu and Zhong-Zhou Ren
Universe 2025, 11(9), 296; https://doi.org/10.3390/universe11090296 - 1 Sep 2025
Viewed by 276
Abstract
We present extensive comparisons of 16O+16O collisions at a center-of-mass energy per nucleon pair sNN=200 GeV and 208Pb+16O collisions at sNN=68.5 GeV as well as 20Ne+20Ne [...] Read more.
We present extensive comparisons of 16O+16O collisions at a center-of-mass energy per nucleon pair sNN=200 GeV and 208Pb+16O collisions at sNN=68.5 GeV as well as 20Ne+20Ne collisions at sNN=200 GeV and 208Pb+20Ne collisions at sNN=68.5 GeV based on a multiphase transport (AMPT) model. We recommend measuring the ratio of the elliptic flow to the triangular flow, which shows appreciable sensitivity to the structure of light nuclei, as also found in other studies. This is especially so if the observable is measured near the target rapidity in 208Pb+16O or 208Pb+20Ne collisions, as originally found in the present study. Our study serves as a useful reference for understanding the effect of structure on observables in collisions involving light nuclei under analysis or on the schedule. Full article
(This article belongs to the Special Issue Relativistic Heavy-Ion Collisions: Theory and Observation)
Show Figures

Figure 1

19 pages, 5591 KB  
Article
The Evolution Mechanism and Stability Prediction of the Wanshuitian Landslide, an Oblique-Dip Slope Wedge Landslide in the Three Gorges Reservoir Area
by Chu Xu, Chang Zhou and Wei Huang
Appl. Sci. 2025, 15(16), 9194; https://doi.org/10.3390/app15169194 - 21 Aug 2025
Viewed by 420
Abstract
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, [...] Read more.
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, based on the Wanshuitian landslide. Following four heavy rainfall events from 3 to 13 July 2024, this landslide exhibited significant deformation on the 17th and was completely destroyed within 40 min. The dimensions of the landslide were 350 m in length, 160 m in width, and 20 m in thickness, with a volume estimated at 8.0 × 105 m3. The characteristics of landslide deformation and the changes in moisture content within the shallow slide body were ascertained using unmanned aerial vehicles, moisture meters, and mobile phone photography. The landslide was identified to have occurred within the weathered residual layer of mudstone, situated between two sandstone layers, with the eastern boundary defined by an inclined rock layer. Upon transitioning into the accelerated deformation stage, the landslide initially exhibited uniform overall sliding deformation, culminating in accelerated deformation destruction. The dip structure created terrain disparities, resulting in a step-like terrain on the left bank and gentler slopes on the right bank, with interbedded soil and rock in a shallow layer, because the interlayered soft and hard geological conditions caused varied weathering and erosion patterns on the riverbank slopes. The interbedded weak–hard stratum layer fostered the development of the oblique-dip slope wedge landslide. Based on the improved Green–Ampt model, we developed a stability prediction methodology for an oblique-dip slope wedge landslide and determined the rainfall infiltration depth threshold of the Wanshuitian landslide (9.8 m). This study aimed not merely to sharpen the evolution mechanism and stability prediction of the Wanshuitian landslide but also to formulate more effective landslide-monitoring strategies and emergency management measures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 6469 KB  
Article
Construction-Induced Waterlogging Simulation in Pinglu Canal Using a Coupled SWMM-HEC-RAS Model: Implications for Inland Waterway Engineering
by Jingwen Li, Jiangdong Feng, Qingyang Wang and Yongtao Zhang
Water 2025, 17(16), 2415; https://doi.org/10.3390/w17162415 - 15 Aug 2025
Viewed by 570
Abstract
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and [...] Read more.
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and Hydrologic Engineering Center—River Analysis System 2D (HEC-RAS 2D hydrodynamic) model. High-resolution Unmanned Aerial Vehicle—Light Detection and Ranging (UAV-LiDAR) Digital Elevation Model (DEM) delineated sub-catchments, while the Green-Ampt model quantified soil conductivity decay. Synchronized runoff data drove high-resolution HEC-RAS 2D simulations of waterlogging evolution under design storms (1–100-year return periods) and a real event (10 May 2025). Key results: Water depth exhibits nonlinear growth with return period—slow at low intensities but accelerating beyond 50-year events, particularly at temporary road junctions where embankments impede flow. Additionally, intensive intermittent rainfall causes significant ponding at excavation pit-road intersections, and optimized drainage drastically shortens recession time. The study reveals a “rapid runoff generation–restricted convergence–prolonged ponding” mechanism under construction disturbance, validates the model’s capability for complex scenarios, and provides critical data for real-time waterlogging risk prediction and drainage optimization during the canal’s construction. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

18 pages, 3690 KB  
Article
Harnessing Horsepower from Horse Manure at the EARTH Centre in South Africa: Biogas Initiative Improve the Facility’s Operational Sustainability
by Charles Rashama, Tonderayi Matambo, Asheal Mutungwazi, Christian Riann and Godwell Nhamo
Energies 2025, 18(7), 1808; https://doi.org/10.3390/en18071808 - 3 Apr 2025
Viewed by 821
Abstract
This study investigated the sustainability aspects of implementing a small-scale biogas digester project at the EARTH Centre, a horse-riding facility for the disabled, in South Africa. Firstly, an energy audit of the facility was conducted. From this exercise, energy-saving opportunities through anaerobic digestion [...] Read more.
This study investigated the sustainability aspects of implementing a small-scale biogas digester project at the EARTH Centre, a horse-riding facility for the disabled, in South Africa. Firstly, an energy audit of the facility was conducted. From this exercise, energy-saving opportunities through anaerobic digestion of horse manure were identified. Biomethane potential tests (BMPs) were then performed using the Automatic Methane potential test system II (AMPTS II) of BioProcess Control (Lund, Sweden). The horse manure BMP result was 106 L/kg.VS with the biogas averaging a methane content of 40%. This BMP was lower than that of common substrates such as cow manure which can range from 150–210 L/kg.VS. The gas production rate was almost constant in the first 13 days indicating a long hydrolysis period for horse manure. The microbial species in the digester did not change much during the incubation period although small changes were visible in the proportions of each species as the reaction progressed from start to finish. The energy audit showed that 47% of the EARTH Centre’s energy requirements, which equated to 14,372 kWh/year, could be secured from biogas or solar instead of obtaining it from the national grid which is powered mainly by unsustainable coal-fired systems. As a starting point, a 10 cubic meter biogas digester was installed to produce 5512 kWh of energy per year in the form of biogas. To boost biogas production and continue running the system smoothly, it was evident that the horse manure-fed digester would require regular spiking with cow manure as a bioaugmentation strategy. The digester also produced bio-fertiliser and several sustainable development goals were fulfilled by this project. Current efforts are focused on process optimization of this technology at the Earth Centre to further improve the sustainability of the whole business. Full article
(This article belongs to the Special Issue New Challenges in Waste-to-Energy and Bioenergy Systems)
Show Figures

Figure 1

22 pages, 2718 KB  
Article
Closing the Loop of Biowaste Composting by Anaerobically Co-Digesting Leachate, a By-Product from Composting, with Glycerine
by Thi Cam Tu Le, Katarzyna Bernat, Tomasz Pokój and Dorota Kulikowska
Energies 2025, 18(3), 537; https://doi.org/10.3390/en18030537 - 24 Jan 2025
Viewed by 1024
Abstract
To achieve the required recycling rates, organic recycling via composting should be widely introduced in Poland for selectively collected biowaste. However, this process not only produces compost but also leachate (LCB), a nitrogen- and organics-rich liquid by-product. So far there has [...] Read more.
To achieve the required recycling rates, organic recycling via composting should be widely introduced in Poland for selectively collected biowaste. However, this process not only produces compost but also leachate (LCB), a nitrogen- and organics-rich liquid by-product. So far there has been limited information on the application of anaerobic digestion (AD) for treating LCB, which has fermentative potential. However, for effective methane production (MP) via AD, the ratio of chemical oxygen demand to total Kjeldahl nitrogen (COD/TKN) and pH of LCB are too low; thus, it should be co-digested with other organics-rich waste, e.g., glycerine (G). The present study tested the effect of G content in feedstock (in the range of 3–5% (v/v)) on the effectiveness of co-digestion with LCB, based on MP and the removal of COD. MP was accessed by using an automatic methane potential test system (AMPTS). Regardless of the feedstock composition (LCB, or LCB with G), the efficiency of COD removal was over 91%. Co-digestion not only increased MP by 6–15%, but also the methane content in the biogas by 4–14% compared to LCB only (353 NL/kg CODadded, 55%). MP and COD removal proceeded in two phases. During co-digestion in the 1st phase, volatile fatty acids (VFA) accumulated up to 2800 mg/L and the pH decreased below 6.8. The presence of G altered the shares of individual VFA and promoted the accumulation of propionic acid in contrast to LCB only, where caproic acid predominated. An initial accumulation of propionic acid and acidification in the mixtures decreased the kinetic constants of MP (from 0.79 to 0.54 d−1) and the rate of COD removal (from 2193 to 1603 mg/(L·d)). In the 2nd phase, the pH recovered, VFA concentrations decreased, and MP was no longer limited by these factors. However, it should be noted that excessive amounts of G, especially in reactors with constant feeding, may cause VFA accumulation to a greater extent and create a toxic environment for methanogens, inhibiting biogas production. In contrast, digestion of LCB only may lead to ammonium buildup if the COD/TKN ratio of the feedstock is too low. Despite these limitations, the use of AD in the treatment of LCB as a sustainable “closed-loop nutrient” technology closes the loop in composting of biowaste. Full article
(This article belongs to the Special Issue New Challenges in Waste-to-Energy and Bioenergy Systems)
Show Figures

Figure 1

16 pages, 571 KB  
Article
Imaging Analyses for Pion and Kaon Sources in Relativistic Heavy-Ion Collisions in a Multiphase Transport Model
by Shi-Yao Wang, Yan-Yu Ren and Wei-Ning Zhang
Universe 2025, 11(2), 31; https://doi.org/10.3390/universe11020031 - 21 Jan 2025
Viewed by 797
Abstract
In this paper, we describe the study of one- and three-dimension pion and kaon source functions for chaotic and partially coherent sources in Pb-Pb central collisions at sNN=2.76 TeV using the AMPT model. The characteristic source function quantities are [...] Read more.
In this paper, we describe the study of one- and three-dimension pion and kaon source functions for chaotic and partially coherent sources in Pb-Pb central collisions at sNN=2.76 TeV using the AMPT model. The characteristic source function quantities are calculated and compared with the results obtained by fitting the two-boson correlation functions using the Gaussian source formula. It was found that the imaging results are approximately consistent with the results of the Gaussian source formula fits. The partially coherent pion sources exhibit a high degree of coherence. However, the kaon pairs with high transverse momenta are emitted with a high degree of chaos. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

34 pages, 19773 KB  
Article
Physically Based Green–Ampt Model in Polar Coordinate System Predicting Soil Water Transport in Moistube Irrigation: Comparison of Physical, Semi-Physical-Empirical, and Numerical Models Under Varying Working Pressure Heads
by Ce Wang, Qun Zhang, Shengwei Zhao, Jun Qian, Qi Li, Jinyang Ye, Xiaoan Chen, Wuerkaixi Kurexi, Mingyi Huang and Zhanyu Zhang
Agronomy 2024, 14(12), 2839; https://doi.org/10.3390/agronomy14122839 - 28 Nov 2024
Viewed by 1089
Abstract
Predicting soil–water dynamics in Moistube irrigation (ΜΤΙ) favours understanding ΜΤΙ functioning mechanisms and technical parameter design. This study proposed a physically based infiltration (PH) model extending the Green–Ampt (GA) model to a two-dimensional polar coordinate system. We treated Moistube as a clay and [...] Read more.
Predicting soil–water dynamics in Moistube irrigation (ΜΤΙ) favours understanding ΜΤΙ functioning mechanisms and technical parameter design. This study proposed a physically based infiltration (PH) model extending the Green–Ampt (GA) model to a two-dimensional polar coordinate system. We treated Moistube as a clay and considered the infiltration from internal Moistube to surrounding soils. The performances of the PH model, together with a semi-physical–empirical (PH–EM) model and a numerical simulation (NUM) model, were evaluated based on regulated working pressure head (WPH) experiments. A HYDRUS 2D model was used based on experimental design to reproduce the soil–water dynamics by assigning Moistube and soil two sets of hydraulic parameters. WPH increase or decrease treatments were applied to Moistube. The Moistube discharge rate, infiltration volume, and wetting front (WF) advance were analyzed and predicted by three models. The results showed that cumulative infiltration, Moistube discharge, and effective saturation around Moistube were enhanced or abated under WPH increase or decrease, with WF accelerating or decelerating. The modelled effective saturation varied between 0.45 and 0.70, providing suitable moist conditions for crops. Percentage of bias (PBIAS) and mean absolute percentage relative error (MAPRE) were employed to evaluate model performances. Three models well-predicted infiltration characteristics and WF advance but differed in accuracy. The PH model overestimated and underestimated the Moistube discharge rate in early and later phases. The prediction accuracy in WF varied across infiltration phases and WPH modes. The PH–EM model yielded accurate results due to its empirical attribute. The NUM model produced novel phenomena of infiltration characteristics at WPH adjustment points, i.e., the discharge rate exponentially decreased over time after the WPH increased but presented restraining followed by rebounding trends after the WPH decreased. The NUM model strongly depended on the selection of the Moistube hydraulic parameters. Extending the GA model to a two-dimensional polar coordinate system by treating Moistube as a clay was practicable in modelling soil water dynamics, thereby contributing to designing and optimizing MTI technical indexes. Full article
(This article belongs to the Special Issue Improving Irrigation Management Practices for Agricultural Production)
Show Figures

Figure 1

14 pages, 471 KB  
Article
Evaluation of Biochemical Methane Potential and Kinetics of Organic Waste Streams for Enhanced Biogas Production
by Rodolfo Llanos-Lizcano, Lacrimioara Senila and Oana Cristina Modoi
Agronomy 2024, 14(11), 2546; https://doi.org/10.3390/agronomy14112546 - 29 Oct 2024
Cited by 5 | Viewed by 3690
Abstract
Organic waste has the potential to produce methane gas as a substitute for petrol-based fuels, while reducing landfilling and possible environmental pollution. Generally, anaerobic digestion (AD) is used only in wastewater treatment plants as a tertiary stage of sewage sludge treatment, generating a [...] Read more.
Organic waste has the potential to produce methane gas as a substitute for petrol-based fuels, while reducing landfilling and possible environmental pollution. Generally, anaerobic digestion (AD) is used only in wastewater treatment plants as a tertiary stage of sewage sludge treatment, generating a fraction of the energy that such process plants require. In this study, four different wastes—food waste (FW), dairy industry waste (DIW), brewery waste (BW), and cardboard waste (CBW)—were tested for biogas production. The biochemical methane potential (BMP) of each sample was evaluated using an automatic methane potential system (AMPTS). Operating parameters such as pH, temperature, total solids, and volatile solids were measured. Experiments on the anaerobic digestion of the samples were monitored under mesophilic conditions (temperature 37 °C, retention time 30 days). Specific methane yields (SMYs), as well as the theoretical methane potential (BMPth), were used to calculate the biodegradability of the substrates, obtaining the highest biodegradability for BW at 95.1% and producing 462.3 ± 1.25 NmL CH4/g volatile solids (VS), followed by FW at an inoculum-to-substrate ratio (ISR) of 2 at 84% generating 391.3 NmLCH4/g VS. The BMP test of the dairy industry waste at an inoculum-to-substrate ratio of 1 was heavily inhibited by bacteria overloading of the easily degradable organic matter, obtaining a total methane production of 106.3 NmL CH4/g VS and a biodegradability index of 24.8%. The kinetic modeling study demonstrated that the best-fitting model was the modified Gompertz model, presenting the highest coefficient of determination (R2) values, the lowest root means square error (RMSE) values for five of the substrates, and the best specific biogas yield estimation with a percentage difference ranging from 0.3 to 3.6%. Full article
Show Figures

Figure 1

18 pages, 24214 KB  
Article
A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall
by Xiaoyang Wei, Weizhong Ren, Wenhui Xu, Simin Cai and Longwei Li
Water 2024, 16(20), 2877; https://doi.org/10.3390/w16202877 - 10 Oct 2024
Cited by 3 | Viewed by 1021
Abstract
The Green–Ampt (GA) model is a widely used analytical method to calculate the depth of the wetting front during intense rainfall. However, it neglects the existence of the transition layer and the seepage parallel to the slope surface. Therefore, a modified stratified Green–Ampt [...] Read more.
The Green–Ampt (GA) model is a widely used analytical method to calculate the depth of the wetting front during intense rainfall. However, it neglects the existence of the transition layer and the seepage parallel to the slope surface. Therefore, a modified stratified Green–Ampt (MSGA) model is proposed. A process to assess the stability of the finite slope during a rainfall event is demonstrated by combining the MSGA model and the limit equilibrium method. In the case of the Liangshuijing landslide, the factor of safety presents a negative correlation with the depth of the wetting front. The factor of safety obtained by the stratified Green–Ampt (SGA) model is smaller than that calculated by the MSGA model, and the gap between the factor of safety based on the two methods widens with time. The moving speed of the wetting front accelerates with the increase in the length of the slope surface, and the size effect becomes apparent when the length is short. In the initial stage of infiltration, the effect of the seepage parallel to the slope surface is small. The effect of the seepage cannot be neglected at the latter stage. The result calculated by the MSGA model agrees well with the measured result in the test. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 28030 KB  
Article
Laboratory and Field Performance Evaluation of NMAS 9.5, 8.0, and 5.6 mm SMA Mixtures for Sustainable Pavement
by Cheolmin Baek, Ohsun Kwon and Jongsub Lee
Sustainability 2024, 16(17), 7840; https://doi.org/10.3390/su16177840 - 9 Sep 2024
Viewed by 1191
Abstract
This study evaluates the laboratory and field performance of stone mastic asphalt (SMA) mixtures with nominal maximum aggregate sizes (NMAS) of 9.5, 8.0, and 5.6 mm. Aggregates and fine aggregates of these sizes were produced using an impact crusher and a polyurethane screen. [...] Read more.
This study evaluates the laboratory and field performance of stone mastic asphalt (SMA) mixtures with nominal maximum aggregate sizes (NMAS) of 9.5, 8.0, and 5.6 mm. Aggregates and fine aggregates of these sizes were produced using an impact crusher and a polyurethane screen. Mix designs for SMA overlays on aged concrete pavement were developed. Laboratory tests assessed rutting performance using full-scale accelerated pavement testing (APT) equipment and reflective cracking resistance using an asphalt mixture performance tester (AMPT). Field evaluations included noise reduction using CPX equipment, skid resistance using SN equipment, and bond strength using field cores. Results showed that for 8.0 mm SMA mixtures to achieve the same rutting performance as 9.5 mm SMA, PG76-22 grade binder was required, whereas 5.6 mm SMA required PG82-22. The 8.0 and 5.6 mm SMA mixtures showed 22.2% and 25% reduced crack progression, respectively, compared with the 9.5 mm SMA mixtures. Field evaluations indicated that 8.0 mm and 5.6 mm SMA pavements reduced tire–pavement noise by 1.7 and 0.8 dB, increased skid resistance by 8.5% and 2.0%, and enhanced shear bond strength by 150%, compared with 9.5 mm SMA. Overall, the 8.0 mm SMA mixture on aged concrete pavement demonstrated superior durability and functionality toward sustainable pavement systems. Full article
Show Figures

Figure 1

14 pages, 4385 KB  
Article
Mechanistic Fatigue Performance Evaluation of Stone Mastic Asphalt Mixtures: Effect of Asphalt Performance Grade and Elastic Recovery
by Jongsub Lee, Sungjin Lee, Yujoong Hwang, Ohsun Kwon and Gyumin Yeon
Polymers 2024, 16(17), 2414; https://doi.org/10.3390/polym16172414 - 26 Aug 2024
Viewed by 1542
Abstract
This study evaluates the crack performance of stone mastic asphalt (SMA) mixtures according to the performance of a modified asphalt binder, evaluated based on the asphalt performance grade (PG) and the elastic recovery of multiple stress creep and recovery (MSCR) according to AASHTO [...] Read more.
This study evaluates the crack performance of stone mastic asphalt (SMA) mixtures according to the performance of a modified asphalt binder, evaluated based on the asphalt performance grade (PG) and the elastic recovery of multiple stress creep and recovery (MSCR) according to AASHTO M 320 and T 350. The cracking performance of the mixture was evaluated using the asphalt mixture performance tester (AMPT) according to AASHTO T 378 and T 400 through dynamic modulus and direct tension cyclic fatigue tests. Furthermore, the recently developed viscoelastic continuum damage (VECD) theory was utilized to evaluate the cyclic fatigue index parameter (apparent damage capacity, Sapp) and the permissible heavy vehicle class. For performance evaluation, six modified asphalt mixtures were prepared and tested using SMA aggregate gradation with a nominal maximum aggregate size (NMAS) of 10 mm. The MSCR test results revealed that, of the six asphalt mixtures, the rubber-based PG76-28 exhibited the least initial strain and the highest elastic recovery. The dynamic modulus test results demonstrated that using a rubber-based modifier increased the elastic modulus at high temperatures and decreased it at low temperatures, thereby enhancing resistance to plastic deformation in the summer and reducing low-temperature cracking in the winter. Finally, the correlation between the Sapp performance index and the elastic recovery of modified asphalt and the number of direct tension cyclic loads until failure of the mixture was evaluated as 0.87 and 0.76, respectively. Full article
Show Figures

Figure 1

18 pages, 2633 KB  
Article
Investigating the Ability of Road Specifications to Discriminate the Rutting Behavior of Rubberized Asphalt Mixtures in Italy
by Usman Ghani, Silvia Milazzo, Gaspare Giancontieri, Gabriella Buttitta, Fan Gu and Davide Lo Presti
Infrastructures 2024, 9(7), 113; https://doi.org/10.3390/infrastructures9070113 - 18 Jul 2024
Cited by 2 | Viewed by 1860
Abstract
Despite its worldwide adoption in many countries, rubberized asphalt mixtures are not fully incorporated as an alternative paving material in current Italian road specifications. This reluctance stems from a lack of experience, resistance to change in established work practices, and, sometimes, insufficient evidence [...] Read more.
Despite its worldwide adoption in many countries, rubberized asphalt mixtures are not fully incorporated as an alternative paving material in current Italian road specifications. This reluctance stems from a lack of experience, resistance to change in established work practices, and, sometimes, insufficient evidence demonstrating tangible benefits with local specifications. Furthermore, conventional characterization methods such as void checks and indirect tensile strength testing by means of IDT may not accurately capture the true benefits of using alternative paving materials. This study introduces performance-driven characterization approaches with the final aim of evaluating whether more advanced procedures may provide additional information compared to current practices and, in turn, promote the use of alternative paving materials. Hence, an investigation has been conducted to compare the rutting behavior of conventional asphalt mixtures with those modified with engineered crumb rubber (ECR). This comparison utilized performance-driven characterization approaches, including a basic IDT-based methodology at higher temperatures (HT-IDT), as well as two more sophisticated approaches, the Stress Sweep Rutting (SSR) and Flow Number (FN) tests, using the asphalt mixture performance tester (AMPT). Finally, the results were compared with those obtained using the IDT, a conventional method as specified by the major Italian road authority. As a result, the addition of ECR proves beneficial in enhancing the qualities of dense mixtures tailored for use on urban and secondary roads; however, only performance-driven characterization, with both basic and advanced methodologies, can clearly describe the pivotal role of ECR in achieving discernible enhancements in the rutting behavior of asphalt mixtures. Full article
Show Figures

Figure 1

13 pages, 2099 KB  
Case Report
Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment
by Maria Ljungström, Elisa Oltra and Marta Pardo
Int. J. Mol. Sci. 2024, 25(14), 7778; https://doi.org/10.3390/ijms25147778 - 16 Jul 2024
Cited by 1 | Viewed by 2827
Abstract
Chronic fatigue syndrome (CFS) is a heterogeneous disorder with a genetically associated vulnerability of the catecholamine metabolism (e.g., catechol O-methyltransferase polymorphisms), in which environmental factors have an important impact. Alpha-methyl-p-tyrosine (AMPT; also referred to as metyrosine) is an approved medication for the treatment [...] Read more.
Chronic fatigue syndrome (CFS) is a heterogeneous disorder with a genetically associated vulnerability of the catecholamine metabolism (e.g., catechol O-methyltransferase polymorphisms), in which environmental factors have an important impact. Alpha-methyl-p-tyrosine (AMPT; also referred to as metyrosine) is an approved medication for the treatment of pheochromocytoma. As a tyrosine hydroxylase inhibitor, AMPT may be a potential candidate for the treatment of diseases involving catecholamine alterations. However, only small-scale clinical trials have tested AMPT repurposing in a few other illnesses. The current case report compiles genetic and longitudinal biochemical data for over a year of follow-up of a male patient sequentially diagnosed with sustained overstress, neurasthenia, CFS (diagnosed in 2012 as per the Center for Disease Control (CDC/Fukuda)), and postural orthostatic tachycardia syndrome (POTS) over a 10-year period and reports the patient’s symptom improvement in response to low–medium doses of AMPT. This case was recognized as a stress-related CFS case. Data are reported from medical records provided by the patient to allow a detailed response to treatment targeting the hyperadrenergic state presented by the patient. We highlight the lack of a positive response to classical approaches to treating CFS, reflecting the limitations of CFS diagnosis and available treatments to alleviate patients’ symptoms. The current pathomechanism hypothesis emphasizes monoamine alterations (hyperadrenergic state) in the DA/adrenergic system and a dysfunctional autonomic nervous system resulting from sympathetic overactivity. The response of the patient to AMPT treatment highlights the relevance of pacing with regard to stressful situations and increased activity. Importantly, the results do not indicate causality between AMPT and its action on the monoamine system, and future studies should evaluate the implications of other targets. Full article
Show Figures

Figure 1

29 pages, 1415 KB  
Article
Investigating Methane, Carbon Dioxide, Ammonia, and Hydrogen Sulphide Content in Agricultural Waste during Biogas Production
by Ephodia Sihlangu, Dibungi Luseba, Thierry Regnier, Primrose Magama, Idan Chiyanzu and Khathutshelo Agree Nephawe
Sustainability 2024, 16(12), 5145; https://doi.org/10.3390/su16125145 - 17 Jun 2024
Cited by 15 | Viewed by 6299
Abstract
The agricultural industry produces a substantial quantity of organic waste, and finding a suitable method for disposing of this highly biodegradable solid waste is a difficult task. The utilisation of anaerobic digestion for agricultural waste is a viable technological solution for both renewable [...] Read more.
The agricultural industry produces a substantial quantity of organic waste, and finding a suitable method for disposing of this highly biodegradable solid waste is a difficult task. The utilisation of anaerobic digestion for agricultural waste is a viable technological solution for both renewable energy production (biogas) and waste treatment. The primary objective of the study was to assess the composition of biogas, namely the percentages of methane, carbon dioxide, ammonia, and hydrogen sulphide. Additionally, the study aimed to quantify the amount of biogas produced and determine the methane yield (measured in NmL/g VS) from different agricultural substrates. The biochemical methane potential (BMP) measurements were conducted in triplicate using the BPC Instruments AMPTS II instrument. The substrates utilised in the investigation were chosen based on their accessibility. The substrates used in this study comprise cattle manure, chicken manure, pig manure, tomato plants, tomatoes, cabbage, mixed fruits, mixed vegetables, dog food, and a co-digestion of mixed vegetables, fruits, and dog food (MVMFDF). Prior to the cleaning process, the makeup of the biogas was assessed using the BIOGAS 5000, a Geotech Analyser. The AMPTS II flow cell automatically monitored and recorded the volume of bio-methane produced after the cleaning stage. The data were examined using the Minitab-17 software. The co-digestion of mixed vegetables, mixed fruits, and dog food (MVMFDF) resulted in the highest methane level of 77.4%, followed by mixed fruits at 76.6%, pig manure at 72.57%, and mixed vegetables at 70.1%. The chicken manure exhibited the greatest levels of ammonia (98.0 ppm) and hydrogen sulphide (589 ppm). Chicken manure had the highest hydrogen sulphide level, followed by pig manure (540 ppm), tomato plants (485 ppm), mixed fruits (250 ppm), and MVMFDF (208 ppm). Ultimately, the makeup of biogas is greatly affected by the unique qualities of each substrate. Substrates containing elevated quantities of hydrogen sulphide, such as chicken manure, require the process of biogas scrubbing. This is because they contain substantial amounts of ammonia and hydrogen sulphide, which can cause corrosion to the equipment in biogas plants. This emphasises the crucial need to meticulously choose substrates, with a specific focus on their organic composition and their capacity to generate elevated methane levels while minimising contaminants. Substrates with a high organic content, such as agricultural waste, are optimal for maximising the production of methane. Furthermore, the implementation of biogas scrubbing procedures is essential for efficiently decreasing carbon dioxide and hydrogen sulphide levels in biogas. By considering and tackling these problems, the effectiveness of biogas generation can be enhanced and its ecological consequences alleviated. This strategy facilitates the advancement of biogas as a sustainable energy source, hence contributing to the attainment of sustainable development goals (SDGs). Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop