Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Actinobacillus pleuropneumoniae (APP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5312 KB  
Article
Evaluating the Immunogenic Potential of ApxI and ApxII from Actinobacillus pleuropneumoniae: An Immunoinformatics-Driven Study on mRNA Candidates
by Yi Deng, Jia-Yong Chen, Yuhan Wang, Yu-Luo Wang, Jiale Liu, Zhiling Peng, Jiayu Zhou, Kun Lu, Xin Wen, Xizhu Chen, Siyu Pang, Dan Wang, Miaohan Li, Senyan Du, San-Jie Cao and Qin Zhao
Vet. Sci. 2025, 12(5), 414; https://doi.org/10.3390/vetsci12050414 - 27 Apr 2025
Viewed by 789
Abstract
Porcine infectious pleuropneumonia (PCP) caused by Actinobacillus pleuropneumoniae (APP) leads to severe economic losses in swine production. Commercial vaccines offer limited cross-protection for the 19 serotypes, while APP mRNA vaccines remain unexplored. This study evaluated eight candidate APP proteins (ApxI-IV, OlmA, TbpB, GalT, [...] Read more.
Porcine infectious pleuropneumonia (PCP) caused by Actinobacillus pleuropneumoniae (APP) leads to severe economic losses in swine production. Commercial vaccines offer limited cross-protection for the 19 serotypes, while APP mRNA vaccines remain unexplored. This study evaluated eight candidate APP proteins (ApxI-IV, OlmA, TbpB, GalT, and GalU) using immunobioinformatics tools, and their immunogenicity and cross-protection were assessed in a mouse model. The results revealed that ApxI and ApxII excel due to their stability, strong antigenicity, non-sensitization, and high immune receptor affinity. Compared to the PBS group, both ApxI and ApxII induced higher serum IgG, IL-2, IL-4, and IFN-γ levels. Following challenge with the two most prevalent APP strains in Mainland China, APP 5b and APP 1, the survival rates for ApxI (71.4% and 62.5%) and ApxII (75% and 71.4%) were measured, with notably reduced lung lesions and neutrophil infiltration. These findings highlight ApxI and ApxII’s potential in mRNA vaccine development as a promising approach to overcome current vaccine limitations. Future research should focus on creating APP mRNA vaccines and testing their efficacy in swine. This study is the first to combine immunoinformatics with experimental validation for APP mRNA vaccine antigens, representing a novel contribution. Full article
Show Figures

Graphical abstract

15 pages, 2692 KB  
Article
Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023
by Fangxin Li, Xin Zong, Guosheng Chen, Yu Zhang, Qi Cao, Lu Li, Huanchun Chen, Zhong Peng and Chen Tan
Microorganisms 2025, 13(4), 938; https://doi.org/10.3390/microorganisms13040938 - 18 Apr 2025
Cited by 1 | Viewed by 631
Abstract
Pasteurella multocida (PM), Glaesserella parasuis (GPS), and Actinobacillus pleuropneumoniae (APP) are among the species with the top five isolation rates on Chinese pig farms annually. To understand the antimicrobial susceptibility and genotypes of these three pathogens that are currently prevalent on pig farms, [...] Read more.
Pasteurella multocida (PM), Glaesserella parasuis (GPS), and Actinobacillus pleuropneumoniae (APP) are among the species with the top five isolation rates on Chinese pig farms annually. To understand the antimicrobial susceptibility and genotypes of these three pathogens that are currently prevalent on pig farms, we investigated 151 bacterial strains (64 PM, 48 GPS, and 39 APP) isolated from 4190 samples from farms in 12 Chinese provinces between 2021 and 2023. The prevalent serotypes were PM type D (50.0%), GPS type 5/12 (47.92%), and APP type 7 (35.90%). A relatively high proportion of PM and APP were resistant to ampicillin (PM, 93.75%; APP, 71.79%), tilmicosin (PM, 64.06%; APP, 58.97%), tetracycline (PM, 43.75%; APP, 61.54%), and enrofloxacin (PM, 34.38%; APP, 10.26%). Ampicillin, tetracycline, and enrofloxacin exhibited low MIC90 values against GPS (8 µg/mL), while sulfamethoxazole-trimethoprim had a high MIC90 value (512 µg/mL). A total of 18 genes conferring resistance to various antimicrobial classes were identified, and tet(L), tet(M), tet(A), blaTEM, sul2, aph(3′)-Ia, dfrA12, qnrS1, strA, sul3, and mef(B) exhibited a high frequency of identification (≥70%). The analysis of regular virulence factor genes showed that several genes, including fimB, fimA, fimD, fimF, and fepG, were found in all PM, GPS, and APP strains. However, certain genes exhibited species-specific preferences, even if they belonged to the same category. Full article
Show Figures

Figure 1

21 pages, 6143 KB  
Article
Development and Characterization of a Recombinant galT-galU Protein for Broad-Spectrum Immunoprotection Against Porcine Contagious Pleuropneumonia
by Jia-Yong Chen, Yi Deng, Jiale Liu, Xin Wen, Yu-Qin Cao, Yu Mu, Mengke Sun, Chang Miao, Zhiling Peng, Kun Lu, Yu-Luo Wang, Xizhu Chen, Siyu Pang, Dan Wang, Jiayu Zhou, Miaohan Li, Yiping Wen, Rui Wu, Shan Zhao, Yi-Fei Lang, Qi-Gui Yan, Xiaobo Huang, Senyan Du, Yiping Wang, Xinfeng Han, San-Jie Cao and Qin Zhaoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(8), 3634; https://doi.org/10.3390/ijms26083634 - 11 Apr 2025
Viewed by 621
Abstract
Porcine contagious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly contagious disease that leads to significant economic losses in the swine industry. Current vaccines are ineffective due to the presence of multiple serotypes and the absence of a predominant seasonal serotype, [...] Read more.
Porcine contagious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly contagious disease that leads to significant economic losses in the swine industry. Current vaccines are ineffective due to the presence of multiple serotypes and the absence of a predominant seasonal serotype, underscoring the need for vaccines with broad-spectrum protection. Previous studies identified galT and galU as promising antigen candidates. In this study, we expressed and characterized a soluble recombinant galT-galU protein (rgalT-galU) from the pET-28a-galT-galU plasmid. The protein, with a molecular weight of 73 kDa, exhibited pronounced immunogenicity in murine models, as indicated by a significant elevation in IgG titers determined through an indirect ELISA. This immune response was further corroborated by substantial antigen-specific splenic lymphocyte proliferation, with a stimulation index of 51.5%. Immunization also resulted in elevated serum cytokines levels of IL-4, IL-12, and IFN-γ, as detected by cytokine assays. Vaccination with rgalT-galU provided immunoprotection against three predominant APP strains (APP1, APP5b, and APP7), achieving protection rates of 71.4%, 71.4%, and 85.7%, respectively. It also effectively mitigated pulmonary lesions and neutrophil infiltration, as verified by histopathological and immunohistochemical analyses. These results indicate that rgalT-galU is a promising candidate for developing cross-protective subunit vaccines against APP infection. Full article
Show Figures

Figure 1

11 pages, 1107 KB  
Article
Field Evaluation of a Ready-to-Use Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Vaccine in Naturally Infected Farms in Taiwan
by Fu-Chun Hsueh, Chia-Yi Chien, Shu-Wei Chang, Bo-Rong Lian, Hong-Yao Lin, Leonardo Ellerma, Ming-Tang Chiou and Chao-Nan Lin
Vet. Sci. 2025, 12(4), 304; https://doi.org/10.3390/vetsci12040304 - 26 Mar 2025
Viewed by 669
Abstract
Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are both important and common pathogens in the pig industry. Both pathogens are major contributors to the porcine respiratory disease complex and serve to potentiate other bacterial infections such as Actinobacillus pleuropneumonia. This [...] Read more.
Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are both important and common pathogens in the pig industry. Both pathogens are major contributors to the porcine respiratory disease complex and serve to potentiate other bacterial infections such as Actinobacillus pleuropneumonia. This study aims to evaluate the efficacy of a ready-to-use bivalent PCV2 and MHP vaccine in the field under naturally PCV2-infected farms against existing monovalent options. We evaluated PCV2 viremia, PCV2 antibodies, and lung lesion scores in slaughtered pigs in our study across four farms in Taiwan. Our results found that in two out of four farms, the piglets vaccinated with Porcilis® PCV M Hyo had superior whole-life PCV2 viremia reduction compared to the existing vaccination program on farms. In the lung lesion scoring, the Porcilis® PCV M Hyo group had significantly lower Actinobacillus pleuropneumonia-type lesions in pigs than in the competitor group in two out of three farms evaluated. In this field trial, Porcilis® PCV M Hyo proved to be efficacious in protecting piglets against both PCV2 viremia and the impact of MHP secondary infection, in the context of a reduction in viremia and reduced APP-like lesions found at slaughter. Full article
Show Figures

Figure 1

16 pages, 4690 KB  
Article
Novel Soluble apxIVA-Truncated Protein and Its Application to Rapid Detection and Distinction of Actinobacillus pleuropneumoniae Wild-Strain-Infected Samples from Those Vaccinated with apxIV-Partially Deleted Vaccine
by Jing Rao, Xiaoyu Liu, Xi Zhu, Yongle Qi, Huanchun Chen and Weicheng Bei
Vet. Sci. 2025, 12(3), 278; https://doi.org/10.3390/vetsci12030278 - 16 Mar 2025
Cited by 1 | Viewed by 883
Abstract
Actinobacillus pleuropneumoniae (APP) is a bacterial pathogen causing porcine pleuropneumonia, causing great economic loss to the global pig industry. Although natural apxIV contributes to the prevention and control of porcine pleuropneumonia, its isolation poses a great challenge, and recombinant soluble apxIV proteins tend [...] Read more.
Actinobacillus pleuropneumoniae (APP) is a bacterial pathogen causing porcine pleuropneumonia, causing great economic loss to the global pig industry. Although natural apxIV contributes to the prevention and control of porcine pleuropneumonia, its isolation poses a great challenge, and recombinant soluble apxIV proteins tend to carry large molecular weight tags. The traditional serologic methods tend not to accurately detect the apxIV-partially deleted vaccine (GDV). In this study, we screened the soluble protein apxIVA N2 (756 bp) from six apxIV-truncated proteins and applied it to the enzyme-linked immunosorbent assay (ELISA) and colloidal gold immunochromatographic strip for detecting the samples vaccinated with APP GDV. The results indicate that N2 was close to the natural apxIV protein in terms of structure and function as it only contained a single His (0.86 kDa) tag and a single S (2 kDa) tag. Among the six candidate proteins, N2 exhibited the best performance in distinguishing APP-infected samples from those vaccinated with the APP GDV. Both ELISA and colloidal gold immunochromatographic strips based on this protein exhibited an excellent performance in detecting and distinguishing wild-strain-infected samples from those vaccinated with the subunit vaccine or the GDV. In addition, three monoclonal antibodies against different antigenic epitopes were identified using these truncated proteins. Our studies are of great significance for further research on APP, the differential diagnosis of wild strains and vaccine strains, and pig control breeding, exhibiting a broad application prospect in the on-site diagnosis of APP, particularly in remote areas lacking detection instruments and professionals. Full article
Show Figures

Figure 1

13 pages, 1106 KB  
Article
Exploring the Genetic Diversity of Mycoplasma hyopneumoniae in Pigs with Pneumonia and Pleurisy at Slaughter
by Ana Karolina Panneitz, Eduarda Ribeiro Braga, Fernando Antonio Moreira Petri, Jean Carlo Olivo Menegatt, David Driemeier, Dominiek Maes and Luís Guilherme de Oliveira
Microorganisms 2024, 12(10), 1988; https://doi.org/10.3390/microorganisms12101988 - 30 Sep 2024
Cited by 2 | Viewed by 1796
Abstract
Mycoplasma (M.) hyopneumoniae is the key pathogen of the porcine respiratory disease complex (PRDC) and contributes to pleurisy in pigs. Due to its limited metabolism and laborious cultivation, molecular tools are useful for diagnosis. This study investigated the genetic diversity of [...] Read more.
Mycoplasma (M.) hyopneumoniae is the key pathogen of the porcine respiratory disease complex (PRDC) and contributes to pleurisy in pigs. Due to its limited metabolism and laborious cultivation, molecular tools are useful for diagnosis. This study investigated the genetic diversity of M. hyopneumoniae in slaughter pigs with pneumonia and pleurisy, and it assessed co-infections by Pasteurella multocida type A (PM), Actinobacillus pleuropneumoniae (APP), and swine influenza virus A (sIVA). Lungs (n = 70) with different pleurisy scores and lesions compatible with M. hyopneumoniae infection were collected for convenience. Macroscopic and microscopic evaluations were performed. M. hyopneumoniae was detected using qPCR, and MLST was used for genetic characterization. Co-infections with PM and APP were also evaluated by qPCR, while the immunohistochemistry assessed sIVA infection. All lungs were positive for M. hyopneumoniae. Histopathology confirmed M. hyopneumoniae-associated lesions. MLST characterization was possible in 25 lungs and revealed 10 distinct allelic profiles, with none matching known sequence types in the public database. Co-infections were detected in 40% of the samples with APP and 32% with PM, with 12% showing both pathogens and 52% of the samples presenting microscopic lesions compatible with sIVA infection. The diverse genetic profiles found underscore the need for research on isolation and potential pathogenic variations. Full article
(This article belongs to the Special Issue Detection, Diagnosis, and Host Interactions of Animal Mycoplasmas)
Show Figures

Figure 1

13 pages, 3151 KB  
Article
Actinobacillus pleuropneumoniae Serotypes by Multiplex PCR Identification and Evaluation of Lung Lesions in Pigs from Piedmont (Italy) Farms
by Matteo Cuccato, Sara Divari, Silvia Ciaramita, Alessandra Sereno, Domenico Campelli, Pier Giuseppe Biolatti, Bartolomeo Biolatti, Francesco Meliota, Enrico Bollo and Francesca Tiziana Cannizzo
Animals 2024, 14(15), 2255; https://doi.org/10.3390/ani14152255 - 3 Aug 2024
Cited by 3 | Viewed by 2670
Abstract
Porcine pleuropneumonia (PPP) is one of the main causes leading to massive losses in the pig industry, with high economic impacts. Among different etiological agents, Actinobacillus pleuropneumoniae (APP) is responsible for severe fibrinous-necrotizing pleuropneumonia. A total of 19 different APP serotypes are currently [...] Read more.
Porcine pleuropneumonia (PPP) is one of the main causes leading to massive losses in the pig industry, with high economic impacts. Among different etiological agents, Actinobacillus pleuropneumoniae (APP) is responsible for severe fibrinous-necrotizing pleuropneumonia. A total of 19 different APP serotypes are currently recognized. This study aimed to identify APP serotypes isolated from pneumonic lesions in naturally infected and dead pigs in the Piedmont Region and to describe lesions. A total of 107 dead pigs with a suspected PPP diagnosis were included in this study. Lungs were evaluated using gross-pathology scoring systems, histopathology, and APP isolation and serotypes identification by multiplex PCR were conducted. Gross lung lesions were mainly represented by fibrinous pneumonia and pleuropneumonia. APP was isolated in 20/107 (18.7%) samples. PCR indicated APP DNA presence in 53/107 (49.5%) of lung samples. The most observed serotypes were serotype 2 in 24/53 (45.3%) and serotype 6 in 13/53 (24.5%) samples. Moreover, multiplex PCR results suggested a coinfection of different serotypes in five samples. This study emphasizes the importance of an integrated approach, utilizing various techniques, such as gross- and histopathology, and bacteriological culture and PCR, to enhance the diagnosis of APP infections. Full article
(This article belongs to the Special Issue Advances in Swine Housing, Health and Welfare)
Show Figures

Figure 1

18 pages, 4156 KB  
Article
Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens
by Shuge Wang, Ke Zhao, Ziqi Chen, Dejun Liu, Shusheng Tang, Chengtao Sun, Hongliang Chen, Yang Wang and Congming Wu
Antibiotics 2024, 13(6), 492; https://doi.org/10.3390/antibiotics13060492 - 27 May 2024
Cited by 6 | Viewed by 4703
Abstract
It is crucial to discover novel antimicrobial drugs to combat resistance. This study investigated the antibacterial properties of halicin (SU3327), an AI-identified anti-diabetic drug, against 13 kinds of common clinical pathogens of animal origin, including multidrug-resistant strains. Employing minimum inhibitory concentration (MIC) and [...] Read more.
It is crucial to discover novel antimicrobial drugs to combat resistance. This study investigated the antibacterial properties of halicin (SU3327), an AI-identified anti-diabetic drug, against 13 kinds of common clinical pathogens of animal origin, including multidrug-resistant strains. Employing minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assessments, halicin demonstrated a broad-spectrum antibacterial effect. Time-killing assays revealed its concentration-dependent bactericidal activity against Escherichia coli ATCC 25922 (E. coli ATCC 25922), Staphylococcus aureus ATCC 29213 (S. aureus ATCC 29213), and Actinobacillus pleuropneumoniae S6 (APP S6) after 4 h of treatment at concentrations above the MIC. Halicin exhibited longer post-antibiotic effects (PAEs) and sub-MIC effects (PA-SMEs) for E. coli 25922, S. aureus 29213, and APP S6 compared to ceftiofur and ciprofloxacin, the commonly used veterinary antimicrobial agents, indicating sustained antibacterial action. Additionally, the results of consecutive passaging experiments over 40 d at sub-inhibitory concentrations showed that bacteria exhibited difficulty in developing resistance to halicin. Toxicology studies confirmed that halicin exhibited low acute toxicity, being non-mutagenic, non-reproductive-toxic, and non-genotoxic. Blood biochemical results suggested that halicin has no significant impact on hematological parameters, liver function, and kidney function. Furthermore, halicin effectively treated respiratory A. pleuropneumoniae infections in murine models. These results underscore the potential of halicin as a new antibacterial agent with applications against clinically relevant pathogens in veterinary medicine. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Virulence in Veterinary Pathogens)
Show Figures

Figure 1

10 pages, 1328 KB  
Article
Novel Experimental Mouse Model to Study the Pathogenesis and Therapy of Actinobacillus pleuropneumoniae Infection
by Duc-Thang Bui, Yi-San Lee, Tien-Fen Kuo, Zeng-Weng Chen and Wen-Chin Yang
Pathogens 2024, 13(5), 412; https://doi.org/10.3390/pathogens13050412 - 15 May 2024
Cited by 2 | Viewed by 2250
Abstract
Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to [...] Read more.
Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to introduce APP into a mouse lung due to the small respiratory tract of mice and bacterial host tropism. In this study, an effective airborne transmission of APP serovar 1 (APP1) was developed in mice for lung infection. Consequently, APP1 infected BALB/c mice and caused 60% death within three days of infection at the indicated condition. APP1 seemed to enter the lung and, in turn, spread to other organs of the mice over the first 5 days after infection. Accordingly, APP1 damaged the lung as evidenced by its morphological and histological examinations. Furthermore, ampicillin fully protected mice against APP1 as shown by their survival, clinical symptoms, body weight loss, APP1 count, and lung damages. Finally, the virulence of two extra APP strains, APP2 and APP5, in the model was compared based on the survival rate of mice. Collectively, this study successfully established a fast and reliable mouse model of APP which can benefit APP research and therapy. Such a model is a potentially useful model for airway bacterial infections. Full article
Show Figures

Graphical abstract

15 pages, 6021 KB  
Article
Naringin’s Alleviation of the Inflammatory Response Caused by Actinobacillus pleuropneumoniae by Downregulating the NF-κB/NLRP3 Signalling Pathway
by Qilin Huang, Wei Li, Xiaohan Jing, Chen Liu, Saad Ahmad, Lina Huang, Guanyu Zhao, Zhaorong Li, Zhengying Qiu and Ruihua Xin
Int. J. Mol. Sci. 2024, 25(2), 1027; https://doi.org/10.3390/ijms25021027 - 14 Jan 2024
Cited by 4 | Viewed by 2315
Abstract
Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid [...] Read more.
Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid found in citrus fruit peels, has been recognized as having significant therapeutic effects on inflammatory diseases of the respiratory system. In this study, we investigated the effects of NAR on the inflammatory response caused by APP through both in vivo and in vitro models. The results showed that NAR reduced the number of neutrophils (NEs) in the bronchoalveolar lavage fluid (BALF), and decreased lung injury and the expression of proteins related to the NLRP3 inflammasome after exposure to APP. In addition, NAR inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in porcine alveolar macrophage (PAMs), reduced protein expression of NLRP3 and Caspase-1, and reduced the secretion of pro-inflammatory cytokines induced by APP. Furthermore, NAR prevented the assembly of the NLRP3 inflammasome complex by reducing protein interaction between NLRP3, Caspase-1, and ASC. NAR also inhibited the potassium (K+) efflux induced by APP. Overall, these findings suggest that NAR can effectively reduce the lung inflammation caused by APP by inhibiting the over-activated NF-κB/NLRP3 signalling pathway, providing a basis for further exploration of NAR as a potential natural product for preventing and treating APP. Full article
Show Figures

Figure 1

16 pages, 2744 KB  
Article
Brazilian Clinical Strains of Actinobacillus pleuropneumoniae and Pasteurella multocida: Capsular Diversity, Antimicrobial Susceptibility (In Vitro) and Proof of Concept for Prevention of Natural Colonization by Multi-Doses Protocol of Tildipirosin
by Suzana Satomi Kuchiishi, Simone Ramos Prigol, Eduarda Bresolin, Bianca Fernandes Lenhard, Caroline Pissetti, María-José García-Iglesias, César-Bernardo Gutiérrez-Martín, Sonia Martínez-Martínez, Luiz Carlos Kreutz and Rafael Frandoloso
Antibiotics 2023, 12(12), 1658; https://doi.org/10.3390/antibiotics12121658 - 25 Nov 2023
Viewed by 2301
Abstract
One hundred Actinobacillus pleuropneumoniae (App) and sixty Pasteurella multocida subsp. multocida serogroup A (PmA) isolates were recovered from porcine pneumonic lungs collected from eight central or southern states of Brazil between 2014 and 2018 (App) or between 2017 and 2021 (PmA). A. pleuropneumoniae [...] Read more.
One hundred Actinobacillus pleuropneumoniae (App) and sixty Pasteurella multocida subsp. multocida serogroup A (PmA) isolates were recovered from porcine pneumonic lungs collected from eight central or southern states of Brazil between 2014 and 2018 (App) or between 2017 and 2021 (PmA). A. pleuropneumoniae clinical isolates were typed by multiplex PCR and the most prevalent serovars were 8, 7 and 5 (43, 25% and 18%, respectively). In addition, three virulence genes were assessed in P. multocida isolates, all being positive to capA (PmA) and kmt1 genes, all negative to capD and toxA, and most of them (85%) negative to pfhA gene. The susceptibility of both pathogens to tildipirosin was investigated using a broth microdilution assay. The percentage of isolates susceptible to tildipirosin was 95% for App and 73.3% for PmA. The MIC50 values were 0.25 and 1 μg/mL and the MIC90 values were 4 and >64 μg/mL for App and PmA, respectively. Finally, a multiple-dose protocol of tildipirosin was tested in suckling piglets on a farm endemic for both pathogens. Tildipirosin was able to prevent the natural colonization of the tonsils by App and PmA and significantly (p < 0.0001) reduced the burden of Glaesserella parasuis in this tissue. In summary, our results demonstrate that: (i) tildipirosin can be included in the list of antibiotics to control outbreaks of lung disease caused by App regardless of the capsular type, and (ii) in the case of clinical strains of App and PmA that are sensitive to tildipirosin based on susceptibility testing, the use of this antibiotic in eradication programs for A. pleuropneumoniae and P. multocida can be strongly recommended. Full article
(This article belongs to the Special Issue Colonization and Infection of Multi-Drug Resistant Organisms)
Show Figures

Figure 1

15 pages, 1903 KB  
Article
Isolation, Identification and Drug Resistance Rates of Bacteria from Pigs in Zhejiang and Surrounding Areas during 2019–2021
by Xiangfei Xu, Junxing Li, Pan Huang, Xuemei Cui, Xuefeng Li, Jiaying Sun, Yee Huang, Quanan Ji, Qiang Wei, Guolian Bao and Yan Liu
Vet. Sci. 2023, 10(8), 502; https://doi.org/10.3390/vetsci10080502 - 3 Aug 2023
Cited by 6 | Viewed by 3507
Abstract
This study aimed to determine the prevalence of bacterial diseases in pig farms in various regions of Zhejiang Province and surrounding areas. A total of 526 samples were collected from 85 pig farms in Zhejiang Province and surrounding areas. In this study, samples [...] Read more.
This study aimed to determine the prevalence of bacterial diseases in pig farms in various regions of Zhejiang Province and surrounding areas. A total of 526 samples were collected from 85 pig farms in Zhejiang Province and surrounding areas. In this study, samples were analyzed using bacterial isolation and purification, Gram staining, PCR amplification, and antimicrobial susceptibility testing. A total of 36 Pasteurella multocida (Pm) isolates were detected, with an isolation rate of 6.84%; 37 Bordetella bronchiseptica (Bb) isolates were detected, with an isolation rate of 7.03%; 60 Glasserella parasuis (G. parasuis) isolates were detected, with an isolation rate of 11.41%; 170 Escherichia coli (E. coli) isolates were detected, with an isolation rate of 32.32%; 67 Streptococcus suis (SS) isolates were detected, with an isolation rate of 12.74%; 44 Actinobacillus pleuropneumoniae (APP) isolates were detected, with an isolation rate of 8.37%; and 7 Salmonella enteritis (SE) isolates were detected, with an isolation rate of 1.33%. Antimicrobial drug susceptibility testing against 21 types of antibiotics was carried out on the isolated strains, and the results showed that 228 strains had varying degrees of resistance to 21 antibiotics, including Pm, Bb, E. coli, and APP, with the highest resistance to lincomycin, at 100%. Pm and APP were the most sensitive to cephalothin, with resistance rates of 0. In terms of strains, Pm had the highest overall sensitivity to 21 antibiotics, and E. coli had the highest resistance. In short, bacterial diseases in Zhejiang and the surrounding areas were harmful, and the drug resistance situation was severe. This study provides scientific guidance for the clinical treatment of bacterial diseases. Full article
(This article belongs to the Special Issue Advances in Veterinary Clinical Microbiology)
Show Figures

Figure 1

17 pages, 4555 KB  
Article
Tea Polyphenols Protects Tracheal Epithelial Tight Junctions in Lung during Actinobacillus pleuropneumoniae Infection via Suppressing TLR-4/MAPK/PKC-MLCK Signaling
by Xiaoyue Li, Zewen Liu, Ting Gao, Wei Liu, Keli Yang, Rui Guo, Chang Li, Yongxiang Tian, Ningning Wang, Danna Zhou, Weicheng Bei and Fangyan Yuan
Int. J. Mol. Sci. 2023, 24(14), 11842; https://doi.org/10.3390/ijms241411842 - 24 Jul 2023
Cited by 8 | Viewed by 2220
Abstract
Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the [...] Read more.
Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins β-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection. Full article
Show Figures

Figure 1

14 pages, 845 KB  
Article
Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms
by Kasumi Suzuki, Hiroki Shinkai, Gou Yoshioka, Toshimi Matsumoto, Takato Takenouchi, Junji Tanaka, Masanori Shimizu, Haruki Kitazawa and Hirohide Uenishi
Animals 2022, 12(22), 3163; https://doi.org/10.3390/ani12223163 - 16 Nov 2022
Cited by 3 | Viewed by 2364
Abstract
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 ( [...] Read more.
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock. Full article
(This article belongs to the Special Issue Immunogenetics for Livestock Husbandry and Breeding)
Show Figures

Figure 1

22 pages, 5218 KB  
Article
New Insights into Neutrophil Extracellular Trap (NETs) Formation from Porcine Neutrophils in Response to Bacterial Infections
by Marta C. Bonilla, Oriana N. Quiros, Michael Wendt, Isabel Hennig-Pauka, Matthias Mörgelin, Maren von Köckritz-Blickwede and Nicole de Buhr
Int. J. Mol. Sci. 2022, 23(16), 8953; https://doi.org/10.3390/ijms23168953 - 11 Aug 2022
Cited by 10 | Viewed by 3745
Abstract
Actinobacillus pleuropneumoniae (A.pp, Gram negative) and Streptococcus (S.) suis (Gram positive) can cause severe diseases in pigs. During infection, neutrophils infiltrate to counteract these pathogens with phagocytosis and/or neutrophil extracellular traps (NETs). NETs consist of a DNA-backbone spiked with [...] Read more.
Actinobacillus pleuropneumoniae (A.pp, Gram negative) and Streptococcus (S.) suis (Gram positive) can cause severe diseases in pigs. During infection, neutrophils infiltrate to counteract these pathogens with phagocytosis and/or neutrophil extracellular traps (NETs). NETs consist of a DNA-backbone spiked with antimicrobial components. The NET formation mechanisms in porcine neutrophils as a response to both of the pathogens are not entirely clear. The aim of this study was to investigate whether A.pp (serotype 2, C3656/0271/11) and S. suis (serotype 2, strain 10) induce NETs by NADPH oxidase- or CD18-dependent mechanisms and to characterize phenotypes of NETs in porcine neutrophils. Therefore, we investigated NET induction in porcine neutrophils in the presence and absence of NET inhibitors and quantified NETs after 3 h. Furthermore, NETosis and phagocytosis were investigated by transmission electron microscopy after 30 min to characterize different phenotypes. A.pp and S. suis induce NETs that are mainly ROS-dependent. A.pp induces NETs that are partially CD18-dependent. Thirty minutes after infection, both of the pathogens induced a vesicular NET formation with only slight differences. Interestingly, some neutrophils showed only NET-marker positive phagolysosomes, but no NET-marker positive vesicles. Other neutrophils showed vesicular NETs and only NET-marker negative phagolysosomes. In conclusion, both of the pathogens induce ROS-dependent NETs. Vesicular NETosis and phagocytosis occur in parallel in porcine neutrophils in response to S. suis serotype 2 and A.pp serotype 2. Full article
(This article belongs to the Special Issue Neutrophil Extracellular Traps (NETs) in Immunity and Diseases)
Show Figures

Figure 1

Back to TopTop