Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Amaranthus mangostanus L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1315 KB  
Article
Migration Behaviour of the Combined Pollutants of Cadmium and 2,2′,4,4′,5,5′-Hexabrominated Diphenyl Ether (BDE-153) in Amaranthus mangostanus L. and Their Toxicity to A. mangostanus
by Weijie Pan, Jicheng Wang, Shengyan Cui, Sai Wu and Cuiping Wang
Appl. Sci. 2024, 14(6), 2631; https://doi.org/10.3390/app14062631 - 21 Mar 2024
Cited by 1 | Viewed by 1178
Abstract
The effects of different concentrations of cadmium and 2,2′,4,4′,5,5′-hexabrominated diphenyl ether (BDE-153) on the growth and related physiological and biochemical indexes of Amaranthus mangostanus L. (amaranth) were studied. The results showed that the presence of BDE-153 promoted the absorption of Cd by the [...] Read more.
The effects of different concentrations of cadmium and 2,2′,4,4′,5,5′-hexabrominated diphenyl ether (BDE-153) on the growth and related physiological and biochemical indexes of Amaranthus mangostanus L. (amaranth) were studied. The results showed that the presence of BDE-153 promoted the absorption of Cd by the amaranth and inhibited the migration of Cd from the roots to the shoots. At the same time, 0.1 mg/L of Cd had a synergistic effect on the migration of BDE-153, but 5 mg/L Cd inhibited the accumulation of BDE-153 in the aboveground part of the amaranth. In addition, the kinetics of the uptake of pollutants by the amaranth showed that both Cd and BDE-153 could be transported by amaranth, but Cd and BDE-153 were mainly enriched in the roots, and the presence of Cd may cause a lag in the uptake of BDE-153 in the shoots. Compared with the control group, the biomass of the amaranth affected by BDE-153 and a high concentration of Cd (5 mg/L) decreased by 30.2–49.5%, the chlorophyll content decreased by 43.0–60.3%, the Evans blue increased, and the MDA content was higher. The activities of superoxide dismutase (SOD) and catalase (CAT) also decreased with an increase in the BDE-153 concentration. This indicates that the interaction between BDE-153 and a high concentration of Cd (5 mg/L) is more toxic to amaranth than single Cd pollution. This paper provides the necessary data support for phytoremediation of heavy metal and organic compound pollution. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

10 pages, 224 KB  
Article
Phytotoxic Effects and a Phytotoxin from the Invasive Plant Xanthium italicum Moretti
by Hua Shao, Xiaoli Huang, Xiaoyi Wei and Chi Zhang
Molecules 2012, 17(4), 4037-4046; https://doi.org/10.3390/molecules17044037 - 2 Apr 2012
Cited by 26 | Viewed by 11351
Abstract
The allelopathic effects of different parts of the plant Xanthium italicum Moretti were evaluated by conducting bioassays against two dicot plants, amaranth (Amaranthus mangostanus L.) and lettuce (Lectuca sativa L.), and two monocot plants, wheat (Triticum aestivum Linn) and [...] Read more.
The allelopathic effects of different parts of the plant Xanthium italicum Moretti were evaluated by conducting bioassays against two dicot plants, amaranth (Amaranthus mangostanus L.) and lettuce (Lectuca sativa L.), and two monocot plants, wheat (Triticum aestivum Linn) and ryegrass (Lolium multiforum). Leaf and fruit extract possessed the strongest biological activity, killing all seeds of four test species at 0.05 g/mL concentration. Fruits were chosen for further investigation because of their high biomass. This led to the isolation and identification of a phytotoxin—Xanthinosin—a known sesquiterpene lactone. Xanthinosin significantly affected seedling growth of all test species at 160 µM concentration. Cultivating seeds in 800 μM xanthinosin solution resulted in a great decrease in seedling growth of all test species, especially for the two dicot plants, amaranth and lettuce, whose root length was inhibited by 78% and 89%, respectively. By comparison, the numbers were 69% lower for wheat, and 66% for ryegrass, two monocot plants. When treated with 4 mM xanthinosin solution, seed germination of all test plants was almost completely inhibited. The possibility of utilizing xanthinosin as an eco-friendly herbicide was discussed. Full article
Show Figures

Graphical abstract

Back to TopTop