Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = BYDV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1338 KB  
Article
Effects of Confinement and Wheat Variety on the Performance of Two Aphid Species
by Maria Elisa D. A. Leandro, Joe M. Roberts, Ed T. Dickin and Tom W. Pope
Insects 2025, 16(5), 477; https://doi.org/10.3390/insects16050477 - 1 May 2025
Viewed by 784
Abstract
Bird cherry-oat aphid (Rhopalosiphum padi L.; Hemiptera: Aphididae) and English grain aphid (Sitobion avenae Fabricius; Hemiptera: Aphididae) are economically important cereal crop pests and effective vectors of barley yellow dwarf virus (BYDV). While these aphid species have traditionally been managed with [...] Read more.
Bird cherry-oat aphid (Rhopalosiphum padi L.; Hemiptera: Aphididae) and English grain aphid (Sitobion avenae Fabricius; Hemiptera: Aphididae) are economically important cereal crop pests and effective vectors of barley yellow dwarf virus (BYDV). While these aphid species have traditionally been managed with synthetic chemical insecticides, their use is increasingly difficult due to target organism resistance and potential non-target effects. Exploiting genetic diversity among cereal varieties offers a more sustainable control strategy. In this study, we evaluated how an experimental confinement method using clip cages to restrict an aphid to a single leaf versus free movement on the host plant affects the performance (growth and reproduction) of these two aphid species on various wheat varieties. Aphid performance was significantly influenced by both confinement and wheat variety. Notably, the two aphid species responded in opposite ways to confinement, with S. avenae growing quicker and producing a greater number of offspring under clip cage confinement compared to R. padi, which performed better when left free on the plant. This contrast is likely explained by species-specific feeding site preferences and sensitivity to the microenvironment created by the clip cages. We also found significant differences in aphid performance among host plant varieties, with both aphid species achieving their lowest growth rates on “Wolverine”, a modern BYDV-resistant wheat cultivar. Although none of the tested varieties were completely resistant to aphids, our results indicate that existing commercial cultivars may already carry partial resistance traits that can be leveraged in integrated pest management programs to help suppress aphid populations. Full article
(This article belongs to the Special Issue Protecting Field Crops from Economically Damaging Aphid Infestation)
Show Figures

Figure 1

12 pages, 1203 KB  
Article
Implications of the STAT5B and C1QBP Genes of Grain Aphid Sitobion avenae in the Transmission of Barley Yellow Dwarf Virus
by Chiping Liu, Manwen Zhang, Chen Luo and Zuqing Hu
Agronomy 2024, 14(12), 2787; https://doi.org/10.3390/agronomy14122787 - 23 Nov 2024
Viewed by 871
Abstract
Many plant viruses are transmitted by insect vectors, and the transmission process is regulated by key genes within the vector. However, few of these genes have been reported. Previous studies in our laboratory have shown that the expression of the signal transducer and [...] Read more.
Many plant viruses are transmitted by insect vectors, and the transmission process is regulated by key genes within the vector. However, few of these genes have been reported. Previous studies in our laboratory have shown that the expression of the signal transducer and activator of transcription 5B (STAT5B) in viruliferous vector aphids carrying barley yellow dwarf virus (BYDV) was upregulated, and the complement component 1 Q subcomponent binding protein (C1QBP) within the aphid interacted with the coat protein (CP) and aphid transmission protein (ATP) of BYDV. In this study, we examined the expression levels of STAT5B and C1QBP in the vector aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) using the qPCR method. We conducted this analysis during the acquisition accession periods (AAPs) and inoculation accession periods (IAPs) of the BYDV species GAV (BYDV-GAV). Furthermore, the effects of STAT5B and C1QBP on the acquisition, retention, and transmission of BYDV-GAV in S. avenae were verified using the RNA interference (RNAi) method. The results show the following: (1) the expression levels of STAT5B and C1QBP were significantly upregulated during the AAPs and IAPs of BYDV-GAV; (2) the silencing of STAT5B led to a significant increase in BYDV-GAV retention during IAPs; and (3) the silencing of C1QBP resulted in a notable decrease in BYDV-GAV acquisition during the AAPs, as well as a significant increase in BYDV-GAV retention during the IAPs. These results suggest that STAT5B and C1QBP in S. avenae play a role in BYDV-GAV transmission. These findings highlight the functions of the STAT5B and C1QBP genes and identify C1QBP as a potential target gene for further RNAi-based studies to control the transmission of BYDV-GAV. Full article
Show Figures

Figure 1

14 pages, 1528 KB  
Article
Barley Yellow Dwarf Virus Influences Its Vector’s Endosymbionts but Not Its Thermotolerance
by Evatt Chirgwin, Qiong Yang, Paul A. Umina, Joshua A. Thia, Alex Gill, Wei Song, Xinyue Gu, Perran A. Ross, Shu-Jun Wei and Ary A. Hoffmann
Microorganisms 2024, 12(1), 10; https://doi.org/10.3390/microorganisms12010010 - 19 Dec 2023
Cited by 7 | Viewed by 2070
Abstract
The barley yellow dwarf virus (BYDV) of cereals is thought to substantially increase the high-temperature tolerance of its aphid vector, Rhopalosiphum padi, which may enhance its transmission efficiency. This is based on experiments with North American strains of BYDV and R. padi [...] Read more.
The barley yellow dwarf virus (BYDV) of cereals is thought to substantially increase the high-temperature tolerance of its aphid vector, Rhopalosiphum padi, which may enhance its transmission efficiency. This is based on experiments with North American strains of BYDV and R. padi. Here, we independently test these by measuring the temperature tolerance, via Critical Thermal Maximum (CTmax) and knockdown time, of Australian R. padi infected with a local BYDV isolate. We further consider the interaction between BYDV transmission, the primary endosymbiont of R. padi (Buchnera aphidicola), and a transinfected secondary endosymbiont (Rickettsiella viridis) which reduces the thermotolerance of other aphid species. We failed to find an increase in tolerance to high temperatures in BYDV-infected aphids or an impact of Rickettsiella on thermotolerance. However, BYDV interacted with R. padi endosymbionts in unexpected ways, suppressing the density of Buchnera and Rickettsiella. BYDV density was also fourfold higher in Rickettsiella-infected aphids. Our findings indicate that BYDV does not necessarily increase the temperature tolerance of the aphid transmission vector to increase its transmission potential, at least for the genotype combinations tested here. The interactions between BYDV and Rickettsiella suggest new ways in which aphid endosymbionts may influence how BYDV spreads, which needs further testing in a field context. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents in Plant Pathology)
Show Figures

Figure 1

15 pages, 6111 KB  
Article
Molecular Characteristics of Barley Yellow Dwarf Virus—PAS—The Main Causal Agent of Barley Yellow Dwarf Disease in Poland
by Katarzyna Trzmiel and Beata Hasiów-Jaroszewska
Plants 2023, 12(19), 3488; https://doi.org/10.3390/plants12193488 - 6 Oct 2023
Cited by 2 | Viewed by 2170
Abstract
Barley yellow dwarf is a threat to cereal crops worldwide. Barley yellow dwarf virus—PAS (BYDV-PAS) was detected for the first time in Poland in 2015, then in 2019. In the spring of 2021, in several locations in Poland, winter wheat and barley plants [...] Read more.
Barley yellow dwarf is a threat to cereal crops worldwide. Barley yellow dwarf virus—PAS (BYDV-PAS) was detected for the first time in Poland in 2015, then in 2019. In the spring of 2021, in several locations in Poland, winter wheat and barley plants with dwarfism and leaf yellowing were collected. Reverse transcription—polymerase chain reaction results revealed BYDV presence in 47 samples and excluded wheat streak mosaic virus infections. Next, immuno-captured polymerase chain reactions confirmed only one case of co-infection caused by BYDV and wheat dwarf virus. Moreover, restriction fragment length polymorphism analysis showed that BYDV-PAS was predominant. The preliminary results were confirmed using sequencing. Infected cereal plants originated mainly from northwestern Poland. The complete coding sequence of coat protein (CP) and a fragment of RNA-dependent RNA polymerase (RdRp) genes of 14 Polish isolates were determined and deposited in the GenBank database. The nucleotide and deduced amino acid sequences of local isolates were compared with others reported to date, indicating their high similarity, from 75.4% to 99.5% and from 81.1% to 100% nucleotide sequence identity, in RdRp and CP, respectively. Phylogenetic analysis, based on the CP gene, revealed the presence of 3 main groups. The Polish isolates clustered together within the Ia group. Full article
Show Figures

Figure 1

19 pages, 1603 KB  
Article
Productivity and Stability Evaluation of 12 Selected Avena magna ssp. domestica Lines Based on Multi-Location Experiments during Three Cropping Seasons in Morocco
by El hadji Thiam, Eric N. Jellen, Eric W. Jackson, Mark Nelson, Will Rogers, Ayoub El Mouttaqi and Ouafae Benlhabib
Agriculture 2023, 13(8), 1486; https://doi.org/10.3390/agriculture13081486 - 26 Jul 2023
Cited by 6 | Viewed by 1808
Abstract
Avena magna (2n = 4x = 28) is a tetraploid oat with a very high protein content compared to the hexaploid common oat, A. sativa (2n = 6x = 42). The wild type of A. magna originates from Morocco; its domestication has been [...] Read more.
Avena magna (2n = 4x = 28) is a tetraploid oat with a very high protein content compared to the hexaploid common oat, A. sativa (2n = 6x = 42). The wild type of A. magna originates from Morocco; its domestication has been achieved only within the past 25 years. The present study aimed to evaluate the productivity potential of an A. magna ssp. domestica collection of 11 advanced lines and a control variety, ‘Avery’. Twelve trials were conducted during three cropping seasons at four, three, and five locations and revealed significant differences among the accessions. Data on twelve agro-morphological characters and two disease traits were collected, and they confirmed the presence of variability in this oat germplasm set. Mean grain yield was 30.76 q/ha and varied from site to site, ranging from 6.89 q/ha at Bouchane_19 to 85.5 q/ha at Alnif_21. Across experimental sites, plant height ranged from 48.93 to 120.47 cm; thousand kernel weight from 32.83 to 49.73 g; and harvest index from 20.43 to 31.33%. Line AT6 was relatively tolerant of BYDV and crown rust infections, based on disease severity scoring at the heading stage. According to AMMI analysis, 78% of the grain yield variability was due to the environment factor and 4% was explained by the genetic factor. Among the highest-yielding lines, AT5 and ATC were relatively unstable. Line AT5 was more productive at the elevated site of El Kbab_19, and ATC performed better at the oasis location of Alnif_21 under irrigation. Line AT7 showed the most stable behavior; it was high yielding across the five environments and exceeded the general mean of the experiments. The A. magna ssp. domestica lines proved their suitability for cultivation under local farming conditions. Their nutritional quality, especially their high protein content, makes them good candidates for further testing in the Moroccan breeding program and for integration into local cropping systems. Full article
(This article belongs to the Special Issue Germplasm Resources Exploration and Genetic Breeding of Crops)
Show Figures

Figure 1

23 pages, 6554 KB  
Article
Identifying Putative Resistance Genes for Barley Yellow Dwarf Virus-PAV in Wheat and Barley
by Glenda Alquicer, Emad Ibrahim, Midatharahally N. Maruthi and Jiban Kumar Kundu
Viruses 2023, 15(3), 716; https://doi.org/10.3390/v15030716 - 9 Mar 2023
Cited by 6 | Viewed by 3729
Abstract
Barley yellow dwarf viruses (BYDVs) are one of the most widespread and economically important plant viruses affecting many cereal crops. Growing resistant varieties remains the most promising approach to reduce the impact of BYDVs. A Recent RNA sequencing analysis has revealed potential genes [...] Read more.
Barley yellow dwarf viruses (BYDVs) are one of the most widespread and economically important plant viruses affecting many cereal crops. Growing resistant varieties remains the most promising approach to reduce the impact of BYDVs. A Recent RNA sequencing analysis has revealed potential genes that respond to BYDV infection in resistant barley genotypes. Together with a comprehensive review of the current knowledge on disease resistance in plants, we selected nine putative barley and wheat genes to investigate their involvement in resistance to BYDV-PAV infection. The target classes of genes were (i) nucleotide binding site (NBS) leucine-rich repeat (LRR), (ii) coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR), (iii) LRR receptor-like kinase (RLK), (iv) casein kinase, (v) protein kinase, (vi) protein phosphatase subunits and the transcription factors (TF) (vii) MYB TF, (viii) GRAS (gibberellic acid-insensitive (GAI), repressor of GAI (RGA) and scarecrow (SCR)), and (ix) the MADS-box TF family. Expression of genes was analysed for six genotypes with different levels of resistance. As in previous reports, the highest BYDV-PAV titre was found in the susceptible genotypes Graciosa in barley and Semper and SGS 27-02 in wheat, which contrast with the resistant genotypes PRS-3628 and Wysor of wheat and barley, respectively. Statistically significant changes in wheat show up-regulation of NBS-LRR, CC-NBS-LRR and RLK in the susceptible genotypes and down-regulation in the resistant genotypes in response to BYDV-PAV. Similar up-regulation of NBS-LRR, CC-NBS-LRR, RLK and MYB TF in response to BYDV-PAV was also observed in the susceptible barley genotypes. However, no significant changes in the expression of these genes were generally observed in the resistant barley genotypes, except for the down-regulation of RLK. Casein kinase and Protein phosphatase were up-regulated early, 10 days after inoculation (dai) in the susceptible wheat genotypes, while the latter was down-regulated at 30 dai in resistant genotypes. Protein kinase was down-regulated both earlier (10 dai) and later (30 dai) in the susceptible wheat genotypes, but only in the later dai in the resistant genotypes. In contrast, GRAS TF and MYB TF were up-regulated in the susceptible wheat genotypes while no significant differences in MADS TF expression was observed. Protein kinase, Casein kinase (30 dai), MYB TF and GRAS TF (10 dai) were all up-regulated in the susceptible barley genotypes. However, no significant differences were found between the resistant and susceptible barley genotypes for the Protein phosphatase and MADS FT genes. Overall, our results showed a clear differentiation of gene expression patterns in both resistant and susceptible genotypes of wheat and barley. Therefore, further research on RLK, NBS-LRR, CC-NBS-LRR, GRAS TF and MYB TF can lead to BYDV-PAV resistance in cereals. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

23 pages, 1950 KB  
Article
Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion miscanthi
by Wenjuan Yu, Emilie Bosquée, Jia Fan, Yong Liu, Claude Bragard, Frédéric Francis and Julian Chen
Plants 2022, 11(23), 3352; https://doi.org/10.3390/plants11233352 - 2 Dec 2022
Cited by 6 | Viewed by 2138
Abstract
Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids’ geographic populations, differing in their BYDV transmission efficiency, after [...] Read more.
Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids’ geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by −44.2% with ampicillin and −25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide−associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid–virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission. Full article
(This article belongs to the Special Issue Wheat–Pest Interaction: From Biology to Integrated Management)
Show Figures

Figure 1

14 pages, 2158 KB  
Article
Can Mixed Intercropping Protect Cereals from Aphid-Borne Viruses? An Experimental Approach
by Sarah Grauby, Aurélie Ferrer, Vincent Tolon, Anthony Roume, Alexander Wezel and Emmanuel Jacquot
Insects 2022, 13(6), 521; https://doi.org/10.3390/insects13060521 - 4 Jun 2022
Cited by 4 | Viewed by 2760
Abstract
Intercropping, i.e., association of two or more species, is promising to reduce insect populations in fields. The cereal aphid Rhopalosiphum padi, a vector of the Barley yellow dwarf virus PAV (BYDV-PAV), represents a major threat for cereal grain production. In this study, we [...] Read more.
Intercropping, i.e., association of two or more species, is promising to reduce insect populations in fields. The cereal aphid Rhopalosiphum padi, a vector of the Barley yellow dwarf virus PAV (BYDV-PAV), represents a major threat for cereal grain production. In this study, we tested the potential of winter barley intercropped with clover to reduce the size of R. padi populations and to lower the BYDV-PAV incidence in fields. We used arenas (i.e., sets of 36 barley plants) intercropped with or without clover plants (at different sown densities). In each arena, a single viruliferous founder, R. padi, (with an alate or a wingless morph) was deposited to introduce aphids and viruses in the experiment. Thirteen days later, the number of aphids in the arena, the percentage of plants hosting aphids and the infection rates were monitored. Data produced through this experimental design showed that clover alters the distribution of the aphid progeny (lower aphid spread) produced by an alate founder morph. Moreover, clover reduces the size of aphid populations produced by a wingless founder morph. However, despite the effects of clover on biological parameters of R. padi, the presence of clover in barley arena did not modify BYDV infections, suggesting complex mechanisms between partners of the BYDV pathosystem for plant-to-plant virus spread. Full article
Show Figures

Graphical abstract

12 pages, 2747 KB  
Article
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection
by Nami Minato, Shuichi Hatori, Azusa Okawa, Kai Nakagawa and Mantaro Hironaka
Life 2022, 12(5), 644; https://doi.org/10.3390/life12050644 - 26 Apr 2022
Cited by 13 | Viewed by 3488
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host [...] Read more.
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses. Full article
(This article belongs to the Collection State of the Art in Plant Science)
Show Figures

Figure 1

16 pages, 3720 KB  
Article
Identification of Viruses Infecting Oats in Korea by Metatranscriptomics
by Na-Kyeong Kim, Hyo-Jeong Lee, Sang-Min Kim and Rae-Dong Jeong
Plants 2022, 11(3), 256; https://doi.org/10.3390/plants11030256 - 19 Jan 2022
Cited by 8 | Viewed by 3063
Abstract
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats (Avena sativa L.) has recently been increased in Korea. To date, however, few studies have been undertaken to identify [...] Read more.
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats (Avena sativa L.) has recently been increased in Korea. To date, however, few studies have been undertaken to identify the viruses infecting oats in this country. In this study, we carried out RNA-sequencing followed by bioinformatics analyses to understand the virosphere in six different geographical locations in Korea where oats are cultivated. We identified three different virus species, namely, barley yellow dwarf virus (BYDV) (BYDV-PAV and BYDV-PAS), cereal yellow dwarf virus (CYDV) (CYDV-RPS and CYDV-RPV), and rice black-streaked dwarf virus (RBSDV). Based on the number of virus-associated reads and contigs, BYDV-PAV was a dominant virus infecting winter oats in Korea. Interestingly, RBSDV was identified in only a single region, and this is the first report of this virus infecting oats in Korea. Single nucleotide polymorphisms analyses indicated that most BYDV, CYDV, and RBSDV isolates show considerable genetic variations. Phylogenetic analyses indicated that BYDVs and CYDVs were largely grouped in isolates from Asia and USA, whereas RBSDV was genetically similar to isolates from China. Overall, the findings of this study provide a preliminary characterization of the types of plant viruses infecting oats in six geographical regions of Korea. Full article
(This article belongs to the Special Issue Identification and Molecular Characterization of Plant Virus)
Show Figures

Graphical abstract

14 pages, 1665 KB  
Article
Yield Losses Caused by Barley Yellow Dwarf Virus-PAV Infection in Wheat and Barley: A Three-Year Field Study in South-Eastern Australia
by Narelle Nancarrow, Mohammad Aftab, Grant Hollaway, Brendan Rodoni and Piotr Trębicki
Microorganisms 2021, 9(3), 645; https://doi.org/10.3390/microorganisms9030645 - 19 Mar 2021
Cited by 45 | Viewed by 6259
Abstract
Barley yellow dwarf virus (BYDV) is transmitted by aphids and significantly reduces the yield and quality of cereals worldwide. Four experiments investigating the effects of barley yellow dwarf virus-PAV (BYDV-PAV) infection on either wheat or barley were conducted over three years (2015, 2017, [...] Read more.
Barley yellow dwarf virus (BYDV) is transmitted by aphids and significantly reduces the yield and quality of cereals worldwide. Four experiments investigating the effects of barley yellow dwarf virus-PAV (BYDV-PAV) infection on either wheat or barley were conducted over three years (2015, 2017, and 2018) under typical field conditions in South-Eastern Australia. Plants inoculated with BYDV-PAV using viruliferous aphids (Rhopalosiphum padi) were harvested at maturity then grain yield and yield components were measured. Compared to the non-inoculated control, virus infection severely reduced grain yield by up to 84% (1358 kg/ha) in wheat and 64% (1456 kg/ha) in barley. The yield component most affected by virus infection was grain number, which accounted for a large proportion of the yield loss. There were no significant differences between early (seedling stage) and later (early-tillering stage) infection for any of the parameters measured (plant height, biomass, yield, grain number, 1000-grain weight or grain size) for either wheat or barley. Additionally, this study provides an estimated yield loss value, or impact factor, of 0.91% (72 kg/ha) for each one percent increase in natural BYDV-PAV background infection. Yield losses varied considerably between experiments, demonstrating the important role of cultivar and environmental factors in BYDV epidemiology and highlighting the importance of conducting these experiments under varying conditions for specific cultivar–vector–virus combinations. Full article
(This article belongs to the Special Issue Plant Viruses: From Ecology to Control)
Show Figures

Figure 1

20 pages, 4178 KB  
Article
Efficient Confirmation of Plant Viral Proteins and Identification of Specific Viral Strains by nanoLC-ESI-Q-TOF Using Single-Leaf-Tissue Samples
by Pavel Cejnar, Štěpánka Kučková, Jiří Šantrůček, Miroslav Glasa, Petr Komínek, Daniel Mihálik, Lucie Slavíková, Leona Leišová-Svobodová, Tatiana Smirnova, Radovan Hynek, Jiban Kumar Kundu and Pavel Ryšánek
Pathogens 2020, 9(11), 966; https://doi.org/10.3390/pathogens9110966 - 19 Nov 2020
Cited by 3 | Viewed by 3665
Abstract
Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein [...] Read more.
Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456. Full article
Show Figures

Figure 1

20 pages, 2072 KB  
Article
Simultaneous Increase in CO2 and Temperature Alters Wheat Growth and Aphid Performance Differently Depending on Virus Infection
by Ana Moreno-Delafuente, Elisa Viñuela, Alberto Fereres, Pilar Medina and Piotr Trębicki
Insects 2020, 11(8), 459; https://doi.org/10.3390/insects11080459 - 22 Jul 2020
Cited by 25 | Viewed by 4785
Abstract
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO2) and [...] Read more.
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO2) and temperature on the interactions among wheat (Triticum aestivum L.), Barley yellow dwarf virus species PAV (BYDV-PAV) and its vector, the bird cherry-oat aphid (Rhopalosiphum padi L.). Plant traits and aphid biological parameters were examined under two climate and atmospheric scenarios, current (ambient CO2 and temperature = 400 ppm and 20 °C), and future predicted (elevated CO2 and temperature = 800 ppm and 22 °C), on non-infected and BYDV-PAV-infected plants. Our results show that combined elevated CO2 and temperature increased plant growth, biomass, and carbon to nitrogen (C:N) ratio, which in turn significantly decreased aphid fecundity and development time. However, virus infection reduced chlorophyll content, biomass, wheat growth and C:N ratio, significantly increased R. padi fecundity and development time. Regardless of virus infection, aphid growth rates remained unchanged under simulated future conditions. Therefore, as R. padi is currently a principal pest in temperate cereal crops worldwide, mainly due to its role as a plant virus vector, it will likely continue to have significant economic importance. Furthermore, an earlier and more distinct virus symptomatology was highlighted under the future predicted scenario, with consequences on virus transmission, disease epidemiology and, thus, wheat yield and quality. These research findings emphasize the complexity of plant–vector–virus interactions expected under future climate and their implications for plant disease and pest incidence in food crops. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Pathogens)
Show Figures

Figure 1

16 pages, 2010 KB  
Article
Does the Infectious Status of Aphids Influence Their Preference Towards Healthy, Virus-Infected and Endophytically Colonized Plants?
by Junior Corneille Fingu-Mabola, Clément Martin, Thomas Bawin, François Jean Verheggen and Frédéric Francis
Insects 2020, 11(7), 435; https://doi.org/10.3390/insects11070435 - 11 Jul 2020
Cited by 16 | Viewed by 4670
Abstract
Aphids (Hemiptera: Aphididae) cause significant damage and transmit viruses to various crop plants. We aimed to evaluate how the infectious status of aphids influences their interaction with potential hosts. Two aphid (Myzus persicae and Rhopalosiphum padi) and plant (Nicotiana tabacum [...] Read more.
Aphids (Hemiptera: Aphididae) cause significant damage and transmit viruses to various crop plants. We aimed to evaluate how the infectious status of aphids influences their interaction with potential hosts. Two aphid (Myzus persicae and Rhopalosiphum padi) and plant (Nicotiana tabacum and Triticum aestivum) species were used. The preferences of aphids towards healthy, virus-infected (Potato Leafroll Virus (PLRV) and Barley Yellow Dwarf virus (BYDV)), and endophytic entomopathogenic fungi (EEPF)-inoculated (Beauveria bassiana and Metarhizium acridum) plants were investigated in dual-choice tests. The headspace volatiles of the different plant modalities were also sampled and analyzed. Viruliferous and non-viruliferous aphids were more attracted to EEPF-inoculated plants compared to uninoculated plants. However, viruliferous aphids were more attracted to EEPF-inoculated plants compared to virus-infected plants, while non-viruliferous insects exhibited no preference. Fungal-inoculated plants released higher amounts of aldehydes (i.e., heptanal, octanal, nonanal and decanal) compared to other plants, which might explain why viruliferous and non-viruliferous aphids were more abundant in EEPF-inoculated plants. Our study provides an interesting research perspective on how EEPF are involved in behavior of virus vector, depending on the infectious status of the latter. Full article
(This article belongs to the Special Issue Plant-Arthropod-Microorganism Interactions)
Show Figures

Figure 1

10 pages, 491 KB  
Article
The Evaluation of Wheat Cultivar Resistance and Yield Loss Thresholds in Response to Barley Yellow Dwarf Virus-PAV Infection
by Jana Chrpová, Ondřej Veškrna, Jana Palicová and Jiban Kumar Kundu
Agriculture 2020, 10(1), 20; https://doi.org/10.3390/agriculture10010020 - 16 Jan 2020
Cited by 8 | Viewed by 4836
Abstract
The PAV strain of barley yellow dwarf virus (BYDV) is one of the causal agents of yellow dwarf disease in cereals. The use of germplasm resistant to BYDV is generally regarded as the most effective means of controlling damage caused by this pathogen. [...] Read more.
The PAV strain of barley yellow dwarf virus (BYDV) is one of the causal agents of yellow dwarf disease in cereals. The use of germplasm resistant to BYDV is generally regarded as the most effective means of controlling damage caused by this pathogen. In field trials, response to infection with a barley yellow dwarf virus of selected wheat cultivars registered in the Czech Republic was compared with that of control cultivars. Although a good level of resistance to BYDV-PAV was found in cultivar Athlon and yield loss was low, symptoms were more severe than on the moderately resistant control cultivar Sparta. Several other cultivars, such as Nordika, Julie, and Replik, also had slightly less than a 30% reduction in grain weight per spike, even though symptoms were more severe on Sparta or Athlon. Our results showed that, in the case of approximately 60% of wheat plants with BYDV-PAV symptoms, the yield reductions under optimal agronomic conditions reached approximately 17% for moderately resistant cultivars and 30% for moderately susceptible cultivars. The application of N fertilizer significantly reduced yield losses in BYDV-PAV-infected wheat cultivars, particularly in the moderately resistant cultivars. Even when infected with BYDV-PAV, the yield of moderately resistant cultivars, including those of spring wheat, was still acceptable. However, the re-cultivation costs of spring wheat in replacing damaged winter wheat lead to a total economic loss per hectare that is much greater than that for BYDV-infected wheat cultivars (moderately resistant and/or moderately susceptible ones). Furthermore, the economic loss is much lower when a moderately resistant cultivar is used. Hence, even with a high level of disease symptoms in winter wheat, the re-cultivation of spring wheat is not economically feasible. Full article
Show Figures

Figure 1

Back to TopTop