Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = Bi impurities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3161 KB  
Article
Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System
by Yuantao Yang, Zhaoyi Wang, Xuanbing Wang, Wanli Xu, Haibin Yuan, Qingdong Liu, Ruidong Xu and Linjing Yang
Materials 2025, 18(17), 4122; https://doi.org/10.3390/ma18174122 - 2 Sep 2025
Viewed by 773
Abstract
Current electrolytic refining processes for crude solder commonly employ fluosilicic acid (H2SiF6) as the electrolyte with bone glue and β-naphthol additives yet suffer from poor electrolyte stability, coarse cathode crystallization, low current efficiency, and high energy consumption, adversely affecting [...] Read more.
Current electrolytic refining processes for crude solder commonly employ fluosilicic acid (H2SiF6) as the electrolyte with bone glue and β-naphthol additives yet suffer from poor electrolyte stability, coarse cathode crystallization, low current efficiency, and high energy consumption, adversely affecting product quality and economic viability. In order to solve these limitations, electrochemical techniques, XRD, SEM, and ICP-OES were used to study the effects of gelatin and sodium lignosulfonate on the deposition overpotential and cathode morphology, as well as the effects of process parameters on current efficiency and energy consumption. A novel approach was developed using an H2SiF6 system enhanced by gelatin and sodium lignosulfonate for crude solder refining. After optimization, 120 h electrolysis achieved a current efficiency >97.8%, smooth/dense cathode surface, average cell voltage of 0.24 V, and energy consumption of 98.15 kWh/t. Efficient deposition of 81.2% Sn and 75.2% Pb on the cathode was realized, while >93.3% of Sb, Bi, Ag, Cu, and As were enriched in anode slime to facilitate valuable metal recovery, and >90.6% of In/Al concentrated in the electrolyte enabled effective Sn-Pb impurity separation. This study provides theoretical and technical foundations for advancing sustainable and economical electrolytic refining of crude solder. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

21 pages, 10536 KB  
Article
Synthesis, Phase Formation, and Raman Spectroscopy of Ni and Zn(Mg) Codoped Bismuth Stibate Pyrochlore
by Nadezhda A. Zhuk, Sergey V. Nekipelov, Olga V. Petrova, Boris A. Makeev, Sergey I. Isaenko, Maria G. Krzhizhanovskaya, Kristina N. Parshukova, Roman I. Korolev and Ruslana A. Simpeleva
Chemistry 2025, 7(4), 110; https://doi.org/10.3390/chemistry7040110 - 30 Jun 2025
Cited by 1 | Viewed by 735
Abstract
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the [...] Read more.
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the range of 500–1050 °C. The influence of zinc and magnesium on the phase formation process was established. The interaction of oxide precursors occurs at a temperature of 600 °C and higher, resulting in the formation of bismuth stibate (Bi3SbO7) as a binary impurity phase. Oxide precursors, including bismuth(III) and antimony(III,V) oxides, are fixed in the samples up to 750 °C, at which point the intermediate cubic phase Bi3M2/3Sb7/3O11 (sp. gr. Pn-3, M = Zn, Ni) is formed in the zinc system. Interacting with transition element oxides, it is transformed into pyrochlore. An intermediate phase with the Bi4.66Ca1.09VO10.5 structure (sp. gr. Pnnm) was found in the magnesium system. The unit cell parameter of pyrochlore for two samples has a minimum value at 800 °C, which is associated with the onset of high-temperature synthesis of pyrochlore. The synthesis of phase-pure pyrochlores is confirmed by high-resolution Raman spectroscopy. The data interpretation showed that the cations in Ni/Zn pyrochlore are more likely to be incorporated into bismuth positions than in Ni/Mg pyrochlore. The nickel–magnesium pyrochlore is characterized by a low-porosity microstructure, with grain sizes of up to 3 μm, according to SEM data. Zinc oxide has a sintering effect on ceramics. Therefore, the grain size in ceramics is large and varies from 2 to 7 μm. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

20 pages, 5354 KB  
Article
Platinum Group Minerals in Sulfide Droplets of the Zhelos Intrusion, Eastern Sayn, Russia: First Data
by Tatiana B. Kolotilina, Alexander V. Nikolaev, Alexander L. Finkelstein, Alexey S. Mekhonoshin and Olga Yu. Belozerova
Minerals 2025, 15(6), 612; https://doi.org/10.3390/min15060612 - 5 Jun 2025
Viewed by 442
Abstract
The composition of platinum group minerals localized in sulfide droplets from peridotites of the Zhelos intrusion was studied on a scanning electron microscope and on an electron probe microanalyzer. As part of this study, also an analytical approach based on the variation in [...] Read more.
The composition of platinum group minerals localized in sulfide droplets from peridotites of the Zhelos intrusion was studied on a scanning electron microscope and on an electron probe microanalyzer. As part of this study, also an analytical approach based on the variation in accelerating voltage, electron beam intensity and probe diameter is considered in order to estimate the X-ray generation region, when analyzing PGM microinclusions comparable in size to the radiation generation region or smaller. Estimates were made of the possibility of reducing the size of the local analysis area when the accelerating voltage was reduced. The influence of the matrix composition on the results of the local analysis of PGM microphases and accuracy of the Pd and Pt content determination was also evaluated. The findings of the experiments conducted allowed for the successful identification of elements belonging to the PGM microphases and the host matrix. This approach enabled the estimation of the precise levels of impurity elements in their composition. Using a scanning electron microscope in the automatic scanning mode for the detection of heavy elements, 10 single and composite grains of three platinum group minerals larger than 5 µm and 22 microphases ranging in size from 0.3 to 4 µm were detected in the sulfide droplets. The large phases are merenskyite, omeiite and michenerite, with merenskyite being predominant. Among the microscopic inclusions were identified Pd-Bi-Te, Os-Ru-As and Rh-As-S phases. The composition of the studied palladium bismuthotelluride samples indicates a formation temperature range of 489–700 °C. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

14 pages, 3682 KB  
Article
Bismuth(III) Sulfide Films by Chemical Bath Deposition Method Using L-Cysteine as a Novel Sulfur Source
by Aistis Melnikas, Remigijus Ivanauskas, Skirma Zalenkiene and Marius Mikolajūnas
Crystals 2025, 15(6), 515; https://doi.org/10.3390/cryst15060515 - 28 May 2025
Viewed by 799
Abstract
Thin films of bismuth(III) sulfide (Bi2S3) on fluorine doped tin oxide (FTO) coated glass slides were successfully formed by the chemical bath deposition (CBD) method. In this work, a new sulfur precursor L-cysteine was used instead of the typical [...] Read more.
Thin films of bismuth(III) sulfide (Bi2S3) on fluorine doped tin oxide (FTO) coated glass slides were successfully formed by the chemical bath deposition (CBD) method. In this work, a new sulfur precursor L-cysteine was used instead of the typical sulfur precursors, such as urea, thiosulfate, or thioacetamide, used for the formation of the Bi2S3 films by the CBD method. The synthesized Bi2S3 thin film on the FTO substrate was subjected to characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and UV–Visible spectroscopy analysis. An X-ray diffraction analysis showed that, initially, Bi2S3 films of an amorphous structure with elemental sulfur impurities were formed on the FTO surface. During the annealing of the samples, amorphous Bi2S3 was transformed into its crystalline phase with an average crystallite size of about 22.06 nm. The EDS studies confirmed that some of the sulfur that was not part of the Bi2S3 was removed from the films during annealing. The influence of the morphology of Bi2S3 films on their optical properties was confirmed by studies in the UV-visible range. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

24 pages, 5314 KB  
Article
Insights into Stability and Selective Agglomeration in Binary Mixtures of Colloids: A Study on Gold Nanoparticles and Ultra-Small Quantum Dots
by Azita Rezvani, Alexander Kichigin, Benjamin Apeleo Zubiri, Erdmann Spiecker and Doris Segets
Powders 2025, 4(1), 9; https://doi.org/10.3390/powders4010009 - 19 Mar 2025
Cited by 2 | Viewed by 1160
Abstract
Controlling the stability of colloidal nanoparticles in multicomponent systems is crucial for advancing formulations and separation processes. This study investigates the selective agglomeration approach for binary colloidal mixtures, providing both fundamental insights into stability/agglomeration mechanisms and a scalable separation strategy. First, we established [...] Read more.
Controlling the stability of colloidal nanoparticles in multicomponent systems is crucial for advancing formulations and separation processes. This study investigates the selective agglomeration approach for binary colloidal mixtures, providing both fundamental insights into stability/agglomeration mechanisms and a scalable separation strategy. First, we established a binary model system comprising gold nanoparticles (Au NPs) and ZnS quantum dots (QDs) to assess interparticle interactions. UV-visible spectroscopy revealed that impurities released from ZnS QDs, particularly thiol-based ligands and unbound Zn ions, triggered the aggregation of Au NPs depending on their surface stabilizers. Functionalization of Au NPs with bis(p-sulfonatophenyl) phenylphosphine (BSPP) significantly enhanced colloidal stability, with unpurified BSPP-functionalized Au NPs exhibiting superior resistance to agglomeration. Building on these insights, we applied selective agglomeration to separate a complex colloidal system consisting of InP/ZnS core–shell QDs and ZnS byproducts, a critical challenge in QD synthesis that is particularly relevant for post-processing of samples that originate from large-scale flow synthesis. By systematically tuning the ethanol concentration as a poor solvent, we successfully achieved composition-dependent fractionation. Optical and spectroscopic analyses confirmed that coarse fractions were enriched in InP/ZnS QDs, while fines fractions mainly contained pure ZnS QDs, with absorption peaks at 605 nm and 290 nm, respectively. Photoluminescence spectra further demonstrated a redshift in the coarse fractions, correlating with an increase in particle size. These results underscore the potential of selective agglomeration as a scalable, post-synthesis classification method, offering a framework for controlling stability and advancing post-synthesis separation strategies in colloidal multicomponent systems. Full article
Show Figures

Figure 1

10 pages, 5938 KB  
Article
Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping
by Peng Zhu, Xin Zhang, Liu Yang, Yuqi Zhang, Deng Hu, Fuhong Chen, Haoyu Qi and Zhiwei Wang
Materials 2025, 18(5), 1110; https://doi.org/10.3390/ma18051110 - 28 Feb 2025
Viewed by 762
Abstract
A topological insulator with large bulk-insulating behavior and high electron mobility of the surface state is needed urgently, not only because it would be a good platform for studying topological surface states but also because it is a prerequisite for potential future applications. [...] Read more.
A topological insulator with large bulk-insulating behavior and high electron mobility of the surface state is needed urgently, not only because it would be a good platform for studying topological surface states but also because it is a prerequisite for potential future applications. In this work, we demonstrated that tin (Sn) or indium (In) dopants could be introduced into a BiSbTeSe2 single crystal. The impacts of the dopants on the bulk-insulating property and electron mobility of the surface state were systematically investigated by electrical transport measurements. The doped single crystals had the same crystal structure as the pristine BiSbTeSe2, no impure phase was observed, and all elements were distributed homogeneously. The electrical transport measurements illustrated that slight Sn doping could improve the performance of BiSbTeSe2 a lot, as the longitudinal resistivity (ρxx), bulk carrier density (nb), and electron mobility of the surface state (μs) reached about 11 Ωcm, 7.40 × 1014 cm−3, and 6930 cm2/(Vs), respectively. By comparison, indium doping could also improve the performance of BiSbTeSe2 with ρxx, nb, and μs up to about 13 Ωcm, 1.29 × 1015 cm−3, and 4500 cm2/(Vs), respectively. Our findings suggest that Sn- or indium-doped BiSbTeSe2 crystals should be good platforms for studying novel topological properties, as well as promising candidates for low-dissipation electron transport, spin electronics, and quantum computing. Full article
Show Figures

Graphical abstract

17 pages, 2722 KB  
Article
Recognition of State of Health Based on Discharge Curve of Battery by Signal Temporal Logic
by Jing Ning, Bing Xiao and Wenhui Zhong
World Electr. Veh. J. 2025, 16(3), 127; https://doi.org/10.3390/wevj16030127 - 24 Feb 2025
Cited by 1 | Viewed by 1105
Abstract
In order to study an algorithm that recognizes the state of health (SOH) of a battery rapidly and can be easily integrated into the micro-controller unit (MCU), it is proposed that signal temporal logic (STL) language is employed to describe the discharge curves, [...] Read more.
In order to study an algorithm that recognizes the state of health (SOH) of a battery rapidly and can be easily integrated into the micro-controller unit (MCU), it is proposed that signal temporal logic (STL) language is employed to describe the discharge curves, because the STL language is a formal language with strict mathematical definitions and the syntax is composed of simple logic, “and”, “or”, and “not”, under the constraints of time and parameter variation ranges, which is realizable and interpretable. Firstly, the drop voltage amplitude, drop time, voltage rebound amplitude, voltage rebound time, starting voltage, and ending voltage of the discharge curve are selected as the features of the STL formula, so the first-level and second-level primitive formulas are constructed to express the voltage of a battery in good health and poor health clearly. Secondly, the impurity measures of the information gain, misclassification gain, Gini gain, and robust extended gain are presented as the objective functions. Thirdly, the interpreter embedded in the MCU can interpret and execute each STL sentence. The voltage of a battery in good health rises slowly and falls slowly, while the voltage of a battery in poor health rises quickly and falls quickly. When the STL describes the discharge curve as “slow down slow up”, the battery is in good health. When the STL describes the discharge curve as “fast down, fast up”, the battery is in poor health. Among the different objective functions, the highest mean accuracy of the STL reaches 87.5%. In terms of the mean runtime, the extended misclassification gain and the extended Gini gain of the first-level primitives are 00851s and 0.0993, respectively. Under the same mean accuracy of 87%, the information gain and Gini gain of the second-level primitives are 0.2593 s and 0.2341 s. Compared with the existing machine learning algorithms, in terms of the mean runtime, the STL algorithm is superior to the CNN-BiLSTM-MHA model, RNN-LSTM-GRU model, and EC-MKRVM model. In terms of the mean accuracy, compared with the highest correct rate of the CNN-BiLSTM-MHA model, that is, 91.7%, the difference is 4%. As a means of quickly detecting whether the battery is in a healthy state, the accuracy difference is negligible, so the STL algorithm is apparently superior in terms of performance and realizability. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Diagnosis: Health and Safety)
Show Figures

Figure 1

12 pages, 1501 KB  
Article
Experimental Study on Bismuth Removal from Lead with Auxiliary Calcium Magnesium
by Linxing Deng, Haocheng Qin, Weichen Yang and Xiangfeng Kong
Metals 2025, 15(2), 156; https://doi.org/10.3390/met15020156 - 4 Feb 2025
Viewed by 1038
Abstract
The separation of lead from the impurity bismuth remains a significant challenge, with achieving effective separation being a critical bottleneck in the production of high-purity lead via the vacuum gasification method. This study focuses on lead as the primary subject of investigation, conducting [...] Read more.
The separation of lead from the impurity bismuth remains a significant challenge, with achieving effective separation being a critical bottleneck in the production of high-purity lead via the vacuum gasification method. This study focuses on lead as the primary subject of investigation, conducting both theoretical and experimental research on the auxiliary conversion of lead through vacuum gasification. The calculations of the Gibbs free energy indicate that, within the temperature range of 600 to 610 K, the impurity bismuth reacts completely with calcium and magnesium, resulting in the formation of the compound CaMg2Bi2. Under optimal experimental conditions, the bismuth compound CaMg2Bi2 is converted into BiCa2. Notably, BiCa2 is nonvolatile and remains in the crucible as a residue. The auxiliary calcium is entirely transformed into CaSe and CaTe, leading to a reduction in the calcium content of the volatile substances from 0.5% to 16 ppm. Similarly, the magnesium content in the volatiles decreases from 0.66% to 187 ppm. Ultimately, the bismuth content in the final product is reduced from 6 ppm to 1.4 ppm, achieving a removal rate of 76.6%, while the direct yield of metallic lead reaches 71%. This process effectively facilitates the separation of metallic lead from the bismuth impurities. Full article
(This article belongs to the Special Issue Green Technologies in Metal Recovery)
Show Figures

Figure 1

15 pages, 4915 KB  
Article
Impurity Behavior in Cast Copper Anodes: Implications for Electrorefining in a Circular Economy
by Agustin Morales-Aragon, Daniel Sánchez-Rodas, Guillermo Ríos and Michael S. Moats
Metals 2025, 15(2), 113; https://doi.org/10.3390/met15020113 - 24 Jan 2025
Cited by 1 | Viewed by 1636
Abstract
The behavior of impurities in cast copper was investigated to simulate production with increased utilization of secondary sources within the framework of a circular economy. The incorporation of impurities, particularly Ni, Sn, and Sb, from recycled Cu may significantly impact the electrorefining process. [...] Read more.
The behavior of impurities in cast copper was investigated to simulate production with increased utilization of secondary sources within the framework of a circular economy. The incorporation of impurities, particularly Ni, Sn, and Sb, from recycled Cu may significantly impact the electrorefining process. In this study, commercial anodes were doped with Ni, Sn, and Sb concentrations of 2500–6500 g/t, 300–900 g/t, and 450–950 g/t, respectively. Anode concentrations of Pb and Bi were maintained at 1000 g/t and 350 g/t, respectively. As concentrations were examined at two levels, 860 or 1700 g/t, depending on the commercial anode used to create the doped samples. Electron microscopy with microprobe analysis revealed that the commercial anodes contained three predominant phases: Cu2O, (Cu,Ag)2(Se,Te), and a complex oxide phase of Cu, Pb, As, Sb, and/or Bi. Ni, the main impurity, primarily accumulated within the Cu grains, while Sn and Sb tended to form oxidized inclusions. The distribution of Ni in Cu grains was ca. 20% lower in the anodes doped at higher Ni concentrations due to the formation of nickel-bearing inclusions, such as Kupferglimmer and NiO. The doped anodes showed lower quantities of Cu2O inclusions than the commercial anodes due to the preferential formation of oxides with other impurities, including SnO2. These findings highlight potential challenges for Cu electrorefining in a circular economy, as Ni, Sb, and Sn may impact the deportment of these impurities to slimes or electrolyte and may cause copper depletion in the refining electrolyte. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

19 pages, 7376 KB  
Article
New Insight into Visible-Light-Driven Photocatalytic Activity of Ag-Loaded and Oxygen Vacancy-Containing BiOBr(OV)/BiOI0.08 Microspheres
by Xiaobin Hu, Mingxing Zhao and Rongfei Zhang
Materials 2024, 17(24), 6297; https://doi.org/10.3390/ma17246297 - 23 Dec 2024
Cited by 1 | Viewed by 938
Abstract
A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr(OV)/BiOI0.08 (Ag/BiOBr(OV)/BiOI0.08) photocatalysts with varying Ag loading levels were synthesized via the solvothermal–photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading [...] Read more.
A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr(OV)/BiOI0.08 (Ag/BiOBr(OV)/BiOI0.08) photocatalysts with varying Ag loading levels were synthesized via the solvothermal–photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading level significantly enhanced the photogenerated charge carrier (PCC) transfer on the BiOBr(OV)/BiOI0.08 semiconductor surface and the performance of Ag/BiOBr(OV)/BiOI0.08 photocatalysts, which was attributable to the synergism between the effect of OVs and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. Additionally, BiOBr(OV)/BiOI heterojunctions facilitated efficient visible-light harvesting and PCC separation. As indicated by finite-difference time-domain (FDTD) simulations and density functional theory (DFT) calculations, the electric field intensity in the “hot spots” generated at the interface between the BiOBr(OV)/BiOI0.08 semiconductor and Ag nanoparticles increased by more than eight times, and the presence of OVs and Ag atomic clusters introduced impurity energy levels in the semiconductor bandgap, improving PCC separation and Ag/BiOBr(OV)/BiOI0.08 photocatalytic efficiency. However, an increase in silver loading renders the composite metallic, suggesting a reduction in its photocatalytic performance. This work provides new insights for designing highly active visible light catalysts and contributes to the development of more efficient plasmonic catalysts. Full article
Show Figures

Figure 1

16 pages, 10592 KB  
Article
Cu Pillar Electroplating Using a Synthetic Polyquaterntum Leveler and Its Coupling Effect on SAC305/Cu Solder Joint Voiding
by Wenjie Li, Zhe Li, Fang-Yuan Zeng, Qi Zhang, Liwei Guo, Dan Li, Yong-Hui Ma and Zhi-Quan Liu
Materials 2024, 17(22), 5405; https://doi.org/10.3390/ma17225405 - 5 Nov 2024
Cited by 1 | Viewed by 1312
Abstract
With the advancement of high-integration and high-density interconnection in chip manufacturing and packaging, Cu bumping technology in wafer- and panel- level packaging is developed to micrometer-sized structures and pitches to accommodate increased I/O numbers on high-end integrated circuits. Driven by this industrial demand, [...] Read more.
With the advancement of high-integration and high-density interconnection in chip manufacturing and packaging, Cu bumping technology in wafer- and panel- level packaging is developed to micrometer-sized structures and pitches to accommodate increased I/O numbers on high-end integrated circuits. Driven by this industrial demand, significant efforts have been dedicated to Cu electroplating techniques for improved pillar shape control and solder joint reliability, which substantially depend on additive formulations and electroplating parameters that regulate the growth morphology, crystal structure, and impurity incorporation in the process of electrodeposition. It is necessary to investigate the effect of an additive on Cu pillar electrodeposition, and to explore the Kirkendall voids formed during the reflowing process, which may result from the additive-induced impurity in the electrodeposited Cu pillars. In this work, a self-synthesized polyquaterntum (PQ) was made out with dual suppressor and leveler effects, and was combined with prototypical accelerator bis- (sodium sulfopropyl)-disulfide (SPS) for patterned Cu pillar electroplating. Then, Sn96.5/Ag3.0/Cu0.5 (SAC305) solder paste were screen printed on electroplated Cu pillars and undergo reflow soldering. Kirkendall voids formed at the joint interfaces were observed and quantified by SEM. Finally, XRD, and EBSD were employed to characterize the microstructure under varying conditions. The results indicate that PQ exhibits significant suppressive and levelled properties with the new structure of both leveler and suppressor. However, its effectiveness is dependent on liquid convection. PQ and SPS work synergistically, influencing the polarization effect in various convective environments. Consequently, uneven adsorption occurs on the surface of the Cu pillars, which results in more Kirkendall voids at the corners than at the center along the Cu pillar surface. Full article
Show Figures

Figure 1

12 pages, 8394 KB  
Article
Features of Dielectric Properties of 0.20BiScO3·0.45PbTiO3·0.35PbMg1/3Nb2/3O3 Samples Obtained by the Melt-Hardening Method
by A. A. Nogai, A. S. Nogai, D. E. Uskenbaev and E. A. Nogai
Ceramics 2024, 7(4), 1401-1412; https://doi.org/10.3390/ceramics7040091 - 4 Oct 2024
Viewed by 1067
Abstract
This paper studies the structural parameters and electrophysical properties (dielectric and piezo electric, as well as currents of thermostimulated depolarization) of samples of composition 0.20BiScO3·0.45PbTiO3·0.35PbMg1/3Nb2/3O3 (or in short 0.20BS·0.45PT·0.35PMN) obtained by ceramic and melt-hardening [...] Read more.
This paper studies the structural parameters and electrophysical properties (dielectric and piezo electric, as well as currents of thermostimulated depolarization) of samples of composition 0.20BiScO3·0.45PbTiO3·0.35PbMg1/3Nb2/3O3 (or in short 0.20BS·0.45PT·0.35PMN) obtained by ceramic and melt-hardening methods of synthesis. In the ceramic method, the samples were obtained from the starting oxides by two-stage firing. In the melt method, amorphous precursors were first obtained from heat-treated and non-heat-treated starting oxide mixtures by melting and subsequent quenching under sharply gradient temperature conditions. Samples were obtained after grinding, pressing, and thermal annealing of the synthesized precursors, and four types of samples differing in size and shape of the intermediate precursor particles (crystallites) were obtained. The X-ray phase analysis showed that the predominant phase in the studied samples is the perovskite phase; in both types of samples, up to 5 wt.% of impurity phase with pyrochlore structure was also present. The samples of 0.20BS·0.45PT·0.35PMN exhibit dielectric properties characteristic of relaxor ferroelectrics, and the polarized samples exhibit a pronounced piezo effect with a piezo modulus value of d33~200 pC/N. A comparative analysis of the properties of the samples obtained by different methods has been carried out. The essential advantage of the melt method is that its use allows obtaining varieties of four kinds of ferroelectric relaxors and reduces the time of synthesis of samples by 2–3 times. Full article
Show Figures

Figure 1

11 pages, 11165 KB  
Article
Effect of Trace Bismuth on Deformation Behavior of Ultrahigh-Purity Copper during Hot Compression
by Haitao Liu, Yunxiao Hua, Weiqiang Li, Zhenguo Hou, Jincan Dong and Yong Liu
Coatings 2024, 14(10), 1261; https://doi.org/10.3390/coatings14101261 - 1 Oct 2024
Viewed by 1214
Abstract
The effect of trace Bi impurities on the flow stress, microstructure evolution, and dynamic recrystallization (DRX) of the ultrahigh-purity copper was systematically investigated by a hot compression test at 600 °C. The results show that the peak stress of the ultrahigh-purity copper gradually [...] Read more.
The effect of trace Bi impurities on the flow stress, microstructure evolution, and dynamic recrystallization (DRX) of the ultrahigh-purity copper was systematically investigated by a hot compression test at 600 °C. The results show that the peak stress of the ultrahigh-purity copper gradually decreases with increasing Bi content. Trace Bi impurities can refine the microstructure of ultrahigh-purity copper. However, the refinement effect of 50 wt ppm Bi is much more significant than that of 140 wt ppm Bi during the hot deformation. This effect is ascribed to the higher concentration of Bi at GBs, which induces severe GB cracks that reduces the driving force for the nucleation of DRX grains. In addition, the introduction of Bi inhibits the DRX of the ultrahigh-purity copper and transforms its DRX process from the discontinuous dynamic recrystallization (DDRX) to the coexistence of DDRX and continuous dynamic recrystallization (CDRX) mechanisms. Full article
Show Figures

Figure 1

14 pages, 5069 KB  
Article
Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses
by Yu Yao, Jiajun Wen, Qi He, Meizhen Wu, Lishi Chen, Yuxu Bao and Hongxing Zheng
Separations 2024, 11(9), 273; https://doi.org/10.3390/separations11090273 - 19 Sep 2024
Viewed by 1566
Abstract
This study investigates the application of the vertical zone refining process to produce ultra-high-purity tin. Computational fluid dynamics (CFD) simulations were conducted using an Sn-1 wt.%Bi binary alloy to assess the effects of two key parameters—heater temperature and pulling rate—on Bi impurity segregation. [...] Read more.
This study investigates the application of the vertical zone refining process to produce ultra-high-purity tin. Computational fluid dynamics (CFD) simulations were conducted using an Sn-1 wt.%Bi binary alloy to assess the effects of two key parameters—heater temperature and pulling rate—on Bi impurity segregation. The simulations revealed a dynamic evolution in molten zone height, characterized by an initial rapid rise, followed by a gradual increase and ending with a sharp decline. Despite these fluctuations, the lower solid–liquid interface consistently remained slightly convex. After nine zone passes, impurities accumulated at the top of the sample, with dual vortices forming a rhombus- or gate-shaped negative segregation zone. The simulations demonstrated that lower heater temperatures and slower pulling rates enhanced impurity segregation efficiency. Based on these results, experiments were performed using 6N-grade tin as the starting material. Glow discharge mass spectrometry (GDMS) analysis showed that the effective partition coefficients (keff) for impurities such as Ag, Pb, Co, Al, Bi, Cu, Fe, and Ni were significantly less than 1, while As was slightly below but very close to 1, and Sb was above 1. Under optimal conditions—405 °C heater temperature and a pulling rate of 5 μm/s—over 60% of impurities were removed after nine zone passes, approaching 6N9-grade purity. These findings provide valuable insights into optimizing the vertical zone refining process and demonstrate its potential for achieving 7N-grade ultra-high-purity tin. Full article
Show Figures

Figure 1

9 pages, 4348 KB  
Article
Surface Electronic Structure of Cr Doped Bi2Se3 Single Crystals
by Turgut Yilmaz, Xiao Tong, Zhongwei Dai, Jerzy T. Sadowski, Genda Gu, Kenya Shimada, Sooyeon Hwang, Kim Kisslinger, Elio Vescovo and Boris Sinkovic
Crystals 2024, 14(9), 812; https://doi.org/10.3390/cryst14090812 - 14 Sep 2024
Viewed by 2148
Abstract
Here, by using angle-resolved photoemission spectroscopy, we showed that Bi2−xCrxSe3 single crystals have a distinctly well-defined band structure with a large bulk band gap and undistorted topological surface states. These spectral features are unlike their thin film forms [...] Read more.
Here, by using angle-resolved photoemission spectroscopy, we showed that Bi2−xCrxSe3 single crystals have a distinctly well-defined band structure with a large bulk band gap and undistorted topological surface states. These spectral features are unlike their thin film forms in which a large nonmagnetic gap with a distorted band structure was reported. We further provide laser-based high resolution photoemission data which reveal a Dirac point gap even in the pristine sample. The gap becomes more pronounced with Cr doping into the bulk of Bi2Se3. These observations show that the Dirac point can be modified by the magnetic impurities as well as the light source. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop