Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Bi3+, Eu3+ transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2194 KB  
Article
Hidden Magnetic-Field-Induced Multiferroic States in A-Site-Ordered Quadruple Perovskites RMn3Ni2Mn2O12: Dielectric Studies
by Alexei A. Belik, Ran Liu and Kazunari Yamaura
Inorganics 2025, 13(10), 315; https://doi.org/10.3390/inorganics13100315 - 25 Sep 2025
Abstract
The appearance of spin-induced ferroelectric polarization in the so-called type-II multiferroic materials has received a lot of attention. The nature and mechanisms of such polarization were intensively studied using perovskite rare-earth manganites, RMnO3, as model systems. Later, multiferroic properties were discovered [...] Read more.
The appearance of spin-induced ferroelectric polarization in the so-called type-II multiferroic materials has received a lot of attention. The nature and mechanisms of such polarization were intensively studied using perovskite rare-earth manganites, RMnO3, as model systems. Later, multiferroic properties were discovered in some RFeO3 perovskites and possibly in some RCrO3 perovskites. However, R2NiMnO6 double perovskites have ferromagnetic structures that do not break the inversion symmetry. It was found recently that more complex magnetic structures are realized in A-site-ordered quadruple perovskites, RMn3Ni2Mn2O12. Therefore, they have the potential to be multiferroics. In this work, dielectric properties in magnetic fields up to 9 T were investigated for such perovskites as RMn3Ni2Mn2O12 with R = Ce to Ho and for BiMn3Ni2Mn2O12. The samples with R = Bi, Ce, and Nd showed no dielectric anomalies at all magnetic fields, and the dielectric constant decreases with decreasing temperature. The samples with R = Sm to Ho showed qualitatively different behavior when the dielectric constant started increasing with decreasing temperature below certain temperatures close to the magnetic ordering temperatures, TN. This difference could suggest different magnetic ground states. The samples with R = Eu, Dy, and Ho still showed no anomalies on the dielectric constant. On the other hand, peaks emerged at TN on the dielectric constant in the R = Sm sample from about 2 T up to the maximum available field of 9 T. The Gd sample showed peaks on dielectric constant at TN between about 1 T and 7 T. Transition temperatures increase with increasing magnetic fields for R = Sm and decrease for R = Gd. These findings suggest the presence of magnetic-field-induced multiferroic states in the R = Sm and Gd samples with intermediate ionic radii. Dielectric properties at different magnetic fields are also reported for Lu2NiMnO6 for comparison. Full article
(This article belongs to the Special Issue Recent Progress in Perovskites)
Show Figures

Graphical abstract

19 pages, 549 KB  
Article
Evaluating Plastic Waste Management in EU Accession Countries: A Life Cycle Perspective from the Republic of Serbia with Microplastic Implications
by Dunja Prokić, Jasna Stepanov, Ljiljana Milošević, Biljana Panin, Nataša Stojić and Mira Pucarević
Sustainability 2025, 17(14), 6297; https://doi.org/10.3390/su17146297 - 9 Jul 2025
Cited by 1 | Viewed by 821
Abstract
EU accession countries, including the Republic of Serbia, are under growing pressure to align their plastic waste management systems with EU environmental directives. Despite this, significant challenges remain, including inadequate infrastructure, a limited recycling capacity, and weak enforcement mechanisms. This study employs life [...] Read more.
EU accession countries, including the Republic of Serbia, are under growing pressure to align their plastic waste management systems with EU environmental directives. Despite this, significant challenges remain, including inadequate infrastructure, a limited recycling capacity, and weak enforcement mechanisms. This study employs life cycle assessment (LCA) to evaluate the environmental impacts of polyethylene terephthalate (PET) packaging waste in Serbia, focusing on three end-of-life scenarios (EoL): landfilling, recycling, and incineration. Using GaBi Professional v6.0 software and the ReCiPe 2016 methodology, the results indicate that mismanaged PET waste contributes notably to terrestrial ecotoxicity (3.69 kg 1.4-DB eq.) and human toxicity (non-cancer) (2.36 kg 1.4-DB eq.). In 2023, 14,967.8 tons of PET were collected by authorized operators; however, unreported quantities likely end up in landfills or the natural environment. Beyond the quantified LCA results, this study highlights microplastic pollution as an emerging environmental concern. It advocates for the development of Serbia-specific characterization factors (CFs) for PET microplastics, incorporating localized fate, exposure, and effect data. Tailored CFs would enhance the precision of impact assessments for Serbian terrestrial ecosystems, contributing to more effective, evidence-based environmental policies. These insights are crucial for supporting Serbia’s transition to sustainable waste management and for meeting EU environmental standards. Full article
Show Figures

Figure 1

12 pages, 2920 KB  
Article
Crystallization of Ag Nanoparticles in Borate–Bismuth Glass and Its Influence on Eu3+ Luminescence
by Karolina Milewska, Michał Maciejewski, Marcin Łapiński, Anna Synak, Magdalena Narajczyk, Anna Bafia, Wojciech Sadowski and Barbara Kościelska
Appl. Sci. 2025, 15(8), 4495; https://doi.org/10.3390/app15084495 - 18 Apr 2025
Viewed by 577
Abstract
The aim of this study was to investigate the possibility of Ag nanoparticle crystallization in B2O3–Bi2O3 glass using a heat treatment method and to investigate the possible influence of the obtained nanoparticles on the emission intensity [...] Read more.
The aim of this study was to investigate the possibility of Ag nanoparticle crystallization in B2O3–Bi2O3 glass using a heat treatment method and to investigate the possible influence of the obtained nanoparticles on the emission intensity of Eu3+ ions. Borate–bismuth glasses with different B2O3:Bi2O3 molar ratios of 50:50, 60:40 and 70:50 with Ag and Eu3+ ions were successfully synthesized. The structure of the glasses was studied using XRD and FTIR methods. The XRD results exhibited a characteristic amorphous halo, confirming the absence of long-range order in the samples. The glass transition temperatures of various compositions, required to select the annealing temperature, were measured using DTA analysis. The strong maximum in the UV–Vis spectrum of the sample with the highest Bi2O3 content clearly indicated the presence of Ag nanoparticles in the glass. Moreover, a color change was observed for this sample, from slightly yellow to red. The presence of Ag nanoparticles was further confirmed via TEM and XPS studies. However, with a high content of Ag nanoparticles in the matrix, their positive effect on luminescence intensity was not observed. The obtained results show that B2O3–Bi2O3 glass and glass ceramics, with Ag nanoparticles and rare-earth (Re) ions, could be considered as a new phosphor for light-emitting diodes (LEDs). Full article
Show Figures

Figure 1

28 pages, 12427 KB  
Review
Photocatalytic Degradation of Methyl Orange in Wastewater Using TiO2-Based Coatings Prepared by Plasma Electrolytic Oxidation of Titanium: A Review
by Stevan Stojadinović
Reactions 2025, 6(2), 25; https://doi.org/10.3390/reactions6020025 - 8 Apr 2025
Cited by 2 | Viewed by 1900
Abstract
This review analyzes TiO2-based coatings formed by the plasma electrolytic oxidation (PEO) process of titanium for the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation conditions. PEO is recognized as a useful technique for creating oxide coatings on various [...] Read more.
This review analyzes TiO2-based coatings formed by the plasma electrolytic oxidation (PEO) process of titanium for the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation conditions. PEO is recognized as a useful technique for creating oxide coatings on various metals, particularly titanium, to assist in the degradation of organic pollutants. TiO2-based photocatalysts in the form of coatings are more practical than TiO2-based photocatalysts in the form of powder because the photocatalyst does not need to be recycled and reused after wastewater degradation treatment, which is an expensive and time-consuming process. In addition, the main advantage of PEO in the synthesis of TiO2-based photocatalysts is its short processing time (a few minutes), as it excludes the annealing step needed to convert the amorphous TiO2 into a crystalline phase, a prerequisite for a possible photocatalytic application. Pure TiO2 coatings formed by PEO have a low photocatalytic efficiency in the degradation of MO, which is due to the rapid recombination of the photo-generated electron/hole pairs. In this review, recent advances in the sensitization of TiO2 with narrow band gap semiconductors (WO3, SnO2, CdS, Sb2O3, Bi2O3, and Al2TiO5), doping with rare earth ions (example Eu3+) and transition metals (Mn, Ni, Co, Fe) are summarized as an effective strategy to reduce the recombination of photo-generated electron/hole pairs and to improve the photocatalytic efficiency of TiO2 coatings. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

16 pages, 4050 KB  
Article
First-Principles Calculations of the Optical Properties of Bi4Si3O12: RE (RE = Ho3+, Tb3+, Eu3+, Gd3+, Sm3+, Tm3+) Crystals
by Yan Huang, Xuefeng Xiao, Yunlong Zhang, Xu Han, Jiahao Li, Yan Zhang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang, Xuefeng Zhang, Jiayue Xu, Tian Tian and Hui Shen
Crystals 2025, 15(3), 232; https://doi.org/10.3390/cryst15030232 - 28 Feb 2025
Cited by 1 | Viewed by 556
Abstract
This study employs the first-principles calculation method based on density functional theory to investigate and analyze the effects of doping various rare earthions on the optical properties of bismuth silicate (Bi4Si3O12, BSO) crystals. The results indicate that [...] Read more.
This study employs the first-principles calculation method based on density functional theory to investigate and analyze the effects of doping various rare earthions on the optical properties of bismuth silicate (Bi4Si3O12, BSO) crystals. The results indicate that the electronic structure variations of rare earth ions significantly influence the electronic structure and transition characteristics of BSO crystals, thereby altering their optical properties. Specifically, Tm3+ doping notably enhances the polarization capability and infrared responsiveness of BSO crystals, Ho3+ doping improves their absorption and scattering abilities in the visible light range, while Eu3+ doping enhances their ultraviolet absorption. Overall, Tm3+ doping and Ho3+ doping exhibit the most prominent effects on the optical performance of BSO crystals, providing theoretical guidance for designing and optimizing BSO crystals with specific optical properties. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 939 KB  
Article
Fluorescence-Based Aqueous Phosphate Sensing Using Eu(cpboda)(DMF)2
by Benjamin R. Anderson, Natalie Gese, Pranav Nawani and Hergen Eilers
Photonics 2024, 11(3), 250; https://doi.org/10.3390/photonics11030250 - 11 Mar 2024
Viewed by 1721
Abstract
Fluorescence-based phosphate sensing using phosphate-sensitive phosphors is a promising approach for in situ monitoring of phosphate pollution in waterways and reservoirs. To date, the most sensitive phosphor developed for this purpose is Tb(cpboda)(DMF)2, where cpboda = (3,3-((5-Carboxy-1,3-phenylene)bis(oxy))dibenzoic acid). In [...] Read more.
Fluorescence-based phosphate sensing using phosphate-sensitive phosphors is a promising approach for in situ monitoring of phosphate pollution in waterways and reservoirs. To date, the most sensitive phosphor developed for this purpose is Tb(cpboda)(DMF)2, where cpboda = (3,3-((5-Carboxy-1,3-phenylene)bis(oxy))dibenzoic acid). In this study, we further improve this sensitivity by replacing the Tb3+ ions with Eu3+ ions to make Eu(cpboda)(DMF)2 and find concentration-independent phosphate-sensitivity of 1570 ± 120, which is 8× more sensitive than the Tb-version. This improvement is attributed to Eu3+ having a hypersensitive transition, while Tb3+ does not. Additionally, we characterize the phosphor’s optical properties, photodegradation, and water solubility. We find that the phosphor presents challenges with regards to both photodegradation and solubility, as it is found to be poorly soluble in water and is quickly photodegraded under UV radiation <360 nm. However, these obstacles can, in theory, be overcome with the use of direct excitation of the Eu3+ ions at 394 nm and careful design of an analysis instrument to reduce concentration variations. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

13 pages, 5221 KB  
Article
Photoluminescent Lanthanide(III) Coordination Polymers with Bis(1,2,4-Triazol-1-yl)Methane Linker
by Elizaveta A. Ivanova, Ksenia S. Smirnova, Ivan P. Pozdnyakov, Andrei S. Potapov and Elizaveta V. Lider
Inorganics 2023, 11(8), 317; https://doi.org/10.3390/inorganics11080317 - 27 Jul 2023
Cited by 12 | Viewed by 2318
Abstract
A series of new lanthanide(III) coordination polymers with the general formula [Ln(btrm)2(NO3)3]n, where btrm = bis(1,2,4-triazol-1-yl)methane and Ln = Eu3+, Tb3+, Sm3+, Dy3+, Gd3+ were synthesized [...] Read more.
A series of new lanthanide(III) coordination polymers with the general formula [Ln(btrm)2(NO3)3]n, where btrm = bis(1,2,4-triazol-1-yl)methane and Ln = Eu3+, Tb3+, Sm3+, Dy3+, Gd3+ were synthesized and characterized by IR-spectroscopy, elemental, thermogravimetric, single-crystal, and powder X-ray diffraction analyses. Europium(III), samarium(III), terbium(III), and gadolinium(III) coordination polymers demonstrate thermal stability up to 250 °C, while dysprosium(III) is stable up to 275 °C. According to single-crystal X-ray diffraction analysis, the ligand exhibits a bidentate-bridging coordination mode, forming a polymeric chain of octagonal metallocycles. The photoluminescence of the free ligand in the polycrystalline state is observed in the ultraviolet range with a quantum yield of 13%. The energy transfer from the ligand to the lanthanide ions was not observed for all obtained coordination polymers. However, there are sharp bands of lanthanide(III) ions in the diffuse reflectance and excitation spectra of the obtained compounds. Therefore, Ln(III) luminescence arises, most probably, from the enhancement of f-f transition intensity under the influence of the ligand field and non-centrosymmetric interactions. Full article
Show Figures

Graphical abstract

14 pages, 5213 KB  
Article
Novel Red-Emitting BaBi2B4O10:Eu3+ Phosphors: Synthesis, Crystal Structure and Luminescence
by Andrey P. Shablinskii, Alexey V. Povolotskiy, Artem A. Yuriev, Yaroslav P. Biryukov, Rimma S. Bubnova, Margarita S. Avdontceva, Svetlana Yu. Janson and Stanislav K. Filatov
Symmetry 2023, 15(4), 918; https://doi.org/10.3390/sym15040918 - 14 Apr 2023
Cited by 6 | Viewed by 2018
Abstract
The novel red-emitting BaBi2−xEuxB4O10 (x = 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6) phosphors were obtained by a crystallization from a glass. Distribution of the Eu3+ ions over cation sites were refined [...] Read more.
The novel red-emitting BaBi2−xEuxB4O10 (x = 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6) phosphors were obtained by a crystallization from a glass. Distribution of the Eu3+ ions over cation sites were refined for x = 0.1, 0.3 and 0.4 from single-crystal X-ray diffraction data. Emission and excitation spectra of the Eu3+-doped BaBi2B4O10 phosphors were investigated for the first time, where it was shown that characteristic lines are attributed to the intraconfigurational 4f-4f transitions. The optimal concentration for the BaBi2−xEuxB4O10 phosphors is x = 0.4, after which a luminescence intensity decreases. The CIE chromaticity coordinates for the BaBi2B4O10:Eu3+ (x = 0.4) phosphor (0.65, 0.35) are close to the NTSC standard values (0.67, 0.33) for commercial red phosphor. The obtained results show that the BaBi2B4O10:Eu3+ phosphors are promising candidates for solid state lighting application. Full article
(This article belongs to the Special Issue Symmetry in Inorganic Crystallography and Mineralogy)
Show Figures

Figure 1

10 pages, 2173 KB  
Article
Magnetism and Transport Properties of EuCdBi2 with Bi Square Net
by Yi Liu, Jing Li, Shi-Jie Song, Wu-Zhang Yang, Jin-Ke Bao, Wen-He Jiao, Xiao-Feng Xu, Zhi Ren and Guang-Han Cao
Crystals 2023, 13(4), 654; https://doi.org/10.3390/cryst13040654 - 10 Apr 2023
Cited by 1 | Viewed by 2205
Abstract
We report a possible coexistence of nontrivial topology and antiferromagnetism in the newly discovered compounds EuCdBi2, with magnetic Eu layer locating above and below Bi square net. The X-ray diffraction on single crystals and powder indicats that this 112-type material crystalizes [...] Read more.
We report a possible coexistence of nontrivial topology and antiferromagnetism in the newly discovered compounds EuCdBi2, with magnetic Eu layer locating above and below Bi square net. The X-ray diffraction on single crystals and powder indicats that this 112-type material crystalizes in space group of I4/mmm, the same as SrMnBi2 and EuMnBi2. Our combined measurements of magnetization, electrical transport and specific heat consistently reveal antiferromagnetic (AFM) transition of Eu2+ moments at TN = 20 K. The Eu moments are not saturated under a field of 7 T at 1.8 K. The anisotropic susceptibility suggests the Eu moments lie in the ab plane, and a metamagnetic (MM) transition is observed near 1 T below TN. Large positive magnetoresistance (MR) present for both H ab and H c, which are considered to contain part contributions from Dirac bands. Hall measurements show the electron-hole compensation effect is prominent above 100 K, with a crossover of Hall resistance from negative to positive values at ∼150 K. The fitted mobility of electrons is as high as 3250 cm2 V1 S1 at 1.8 K. Interestingly, the rapid increase of carrier density and suppression of mobility appear at around TN, indicating non-negligible interaction between Eu moments and electron/hole bands. EuCdBi2 may provide a new platform to investigate the interplay of topological bands and antiferromagnetic order. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3894 KB  
Article
A Comparative Study of Eu3+-Doped Sillenites: Bi12SiO20 (BSO) and Bi12GeO20 (BGO)
by Marcin Kowalczyk, Marcin Kaczkan, Andrzej Majchrowski and Michał Malinowski
Materials 2023, 16(4), 1621; https://doi.org/10.3390/ma16041621 - 15 Feb 2023
Cited by 2 | Viewed by 2230
Abstract
The spectroscopic properties of Eu3+-doped Bi12SiO20 (BSO) were investigated and compared with that of Eu3+-doped Bi12GeO20 (BGO). The emission properties and the absorption spectra have been measured at 10 K as well as [...] Read more.
The spectroscopic properties of Eu3+-doped Bi12SiO20 (BSO) were investigated and compared with that of Eu3+-doped Bi12GeO20 (BGO). The emission properties and the absorption spectra have been measured at 10 K as well as at 300 K (room temperature). Luminescence was detected due to the direct excitation of the 5D0 level of Eu3+, as well as through the excitation of the 5D1 level. The Judd–Ofelt theoretical framework was used to compute the radiative lifetimes (τ) and the omega parameters (Ωλ). The electric dipole transition probabilities, asymmetry ratios (R), along with the branching ratios (β) were also determined based on the obtained experimental data. The strongest detected luminescence belongs to the 5D07F0 transition observed at 578 nm, similar to the BGO sillenite. Reasons for the major presence of the 5D07F0 emission, theoretically forbidden by the Judd–Ofelt Theory, were investigated and compared with that of the BGO sillenite. Obtained results showed that the strong 5D07F0 line is also present in Eu:BSO, indicating that this is a feature of the entire sillenite family and not just Eu:BGO. Full article
(This article belongs to the Special Issue Trends in Electronic and Optoelectronic Materials)
Show Figures

Figure 1

13 pages, 2928 KB  
Article
Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes
by Jorge A. A. Coelho, Renaldo T. Moura, Ricardo L. Longo, Oscar L. Malta and Albano N. Carneiro Neto
Inorganics 2023, 11(1), 38; https://doi.org/10.3390/inorganics11010038 - 10 Jan 2023
Cited by 5 | Viewed by 2483
Abstract
There is a growing interest in alternatives to lanthanide ion (Ln(III))-based luminescence sensitizing chromophores for in vivo applications, mainly in optical biological windows. Transition metals (M) are relevant candidates as chromophores as they have high absorption rates and emission bands covering a wide [...] Read more.
There is a growing interest in alternatives to lanthanide ion (Ln(III))-based luminescence sensitizing chromophores for in vivo applications, mainly in optical biological windows. Transition metals (M) are relevant candidates as chromophores as they have high absorption rates and emission bands covering a wide range of visible to near-infrared spectrum. However, despite the importance of theoretical models for the design of M–Ln(III) complexes, few contributions have devoted efforts to elucidating the energy transfer (ET) processes between M and Ln(III) ions. In this context, we adapted the intramolecular energy transfer (IET) to calculate, for the first time, the energy transfer rates for M–Ln(III) complexes. A new model was proposed that considers the assistance of phonons in the calculation of ET rates. As an example, the proposed model can estimate the ET rates between Eu(III) and Cr(III) ions in the [CrEuL3]6+ complex (where L = 2-{6-[N,N-diethylcarboxamido]pyridin-2-yl}-1,1′-dimethyl-5,5′-methylene-2′-(5-methylpyridin-2-yl)bis [1H-benzimidazole]). The calculated rates (930–1200 s−1) are in excellent agreement with the experimentally available data (750–1200 s−1) when a phonon-assisted energy transfer process is considered. Thus, this proposed model can be useful to predict and explain photophysical properties driven by the energy transfer between Ln(III) ions and transition metals. Full article
(This article belongs to the Special Issue Light Emitting Metal Complexes)
Show Figures

Figure 1

17 pages, 5944 KB  
Article
Luminescence Properties and Energy Transfer of Eu3+, Bi3+ Co-Doped LuVO4 Films Modified with Pluronic F-127 Obtained by Sol–Gel
by Brenely González-Penguelly, Grethell Georgina Pérez-Sánchez, Dulce Yolotzin Medina-Velázquez, Paulina Martínez-Falcón and Angel de Jesús Morales-Ramírez
Materials 2023, 16(1), 146; https://doi.org/10.3390/ma16010146 - 23 Dec 2022
Cited by 3 | Viewed by 2493
Abstract
Nowadays, orthovanadates are studied because of their unique properties for optoelectronic applications. In this work, the LuVO4:Eu3+, Bi3+ films were prepared by the sol–gel method, using a new simple route, and deposited by the dip-coating technique. The obtained [...] Read more.
Nowadays, orthovanadates are studied because of their unique properties for optoelectronic applications. In this work, the LuVO4:Eu3+, Bi3+ films were prepared by the sol–gel method, using a new simple route, and deposited by the dip-coating technique. The obtained films are transparent, fracture-free, and homogenous. The sol–gel process was monitored by Fourier-transform infrared spectroscopy (FTIR), and according to X-ray diffraction (XRD) results, the crystal structure was tetragonal, and films that were highly oriented along the (200) low-energy direction were obtained. The morphological studies by scanning electron microscopy (SEM) showed uniformly distributed circular agglomerations of rice-like particles with nanometric sizes. The luminescence properties of the films were analyzed using a fixed concentration of 2.5 at. % Eu3+ and different concentrations of Bi3+ (0.5, 1.0, and 1.5 at. %); all the samples emit in red, and it has been observed that the light yield of Eu3+ is enhanced as the Bi3+ content increases when the films are excited at 350 nm, which corresponds to the 1S03P1 transition of Bi3+. Therefore, a highly efficient energy transfer mechanism between Bi3+ and Eu3+ has been observed, reaching up to 71%. Finally, it was established that this energy transfer process occurs via a quadrupole–quadrupole interaction. Full article
(This article belongs to the Special Issue Structural and Optical Studies of Eu3+ Doped Materials)
Show Figures

Figure 1

16 pages, 2086 KB  
Article
Photon–Phonon Atomic Coherence Interaction of Nonlinear Signals in Various Phase Transitions Eu3+: BiPO4
by Huanrong Fan, Faizan Raza, Irfan Ahmed, Muhammad Imran, Faisal Nadeem, Changbiao Li, Peng Li and Yanpeng Zhang
Nanomaterials 2022, 12(23), 4304; https://doi.org/10.3390/nano12234304 - 4 Dec 2022
Cited by 8 | Viewed by 1993
Abstract
We report photon–phonon atomic coherence (cascade- and nested-dressing) interaction from the various phase transitions of Eu3+: BiPO4 crystal. Such atomic coherence spectral interaction evolves from out-of-phase fluorescence to in-phase spontaneous four-wave mixing (SFWM) by changing the time gate. The dressing [...] Read more.
We report photon–phonon atomic coherence (cascade- and nested-dressing) interaction from the various phase transitions of Eu3+: BiPO4 crystal. Such atomic coherence spectral interaction evolves from out-of-phase fluorescence to in-phase spontaneous four-wave mixing (SFWM) by changing the time gate. The dressing dip switch and three dressing dips of SFWM result from the strong photon–phonon destructive cross- and self-interaction for the hexagonal phase, respectively. More phonon dressing results in the destructive interaction, while less phonon dressing results in the constructive interaction of the atomic coherences. The experimental measurements of the photon–phonon interaction agree with the theoretical simulations. Based on our results, we proposed a model for an optical transistor (as an amplifier and switch). Full article
(This article belongs to the Special Issue Optically Responsive Nanomaterials)
Show Figures

Figure 1

13 pages, 3086 KB  
Article
Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency
by Ruoyao Guo, Zifeng Zhao, Aoben Wu, Yuqin Li, Kezhi Wang, Zuqiang Bian and Zhiwei Liu
Molecules 2022, 27(22), 8053; https://doi.org/10.3390/molecules27228053 - 20 Nov 2022
Cited by 6 | Viewed by 2963
Abstract
Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where [...] Read more.
Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490–560 nm, and short excited state lifetimes of 30–540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials)
Show Figures

Figure 1

11 pages, 2140 KB  
Article
Critical Current Density and Meissner Effect of Smart Meta-Superconductor MgB2 and Bi(Pb)SrCaCuO
by Honggang Chen, Yongbo Li, Yao Qi, Mingzhong Wang, Hongyan Zou and Xiaopeng Zhao
Materials 2022, 15(3), 972; https://doi.org/10.3390/ma15030972 - 27 Jan 2022
Cited by 6 | Viewed by 3910
Abstract
The smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO increase the superconducting transition temperature (TC), but the changes in the transport critical current density (JC) and Meissner effect are still unknown. Here, we investigated the JC and Meissner [...] Read more.
The smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO increase the superconducting transition temperature (TC), but the changes in the transport critical current density (JC) and Meissner effect are still unknown. Here, we investigated the JC and Meissner effect of smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO. The use of the standard four-probe method shows that Y2O3:Eu3+ and Y2O3:Eu3++Ag inhomogeneous phase significantly increase the JC, and JC decreases to a minimum value at a higher temperature. The Meissner effect was measured by direct current magnetization. The doping of Y2O3:Eu3+ and Y2O3:Eu3++Ag luminescent inhomogeneous phase causes a Meissner effect of MgB2 and Bi(Pb)SrCaCuO at a higher temperature, while the non-luminescent dopant reduces the temperature at which samples have Meissner effect. The introduction of luminescent inhomogeneous phase in conventional MgB2 and copper oxide high-temperature Bi(Pb)SrCaCuO superconductor increases the TC and JC, and Meissner effect is exerted at higher temperature. Therefore, smart meta-superconductivity is suitable for conventional and copper oxide high-temperature superconductors. Full article
Show Figures

Figure 1

Back to TopTop