Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = CAG triplet repeat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1239 KiB  
Review
Contribution of Androgen Receptor CAG Repeat Polymorphism to Human Reproduction
by Alessandro Ciarloni, Nicola delli Muti, Nicola Ambo, Michele Perrone, Silvia Rossi, Sara Sacco, Gianmaria Salvio and Giancarlo Balercia
DNA 2025, 5(1), 9; https://doi.org/10.3390/dna5010009 - 8 Feb 2025
Viewed by 1846
Abstract
Background: Exon 1 of the gene encoding for the androgen receptor (AR) contains a polymorphic sequence of variably repeated CAG triplets ranging from 11 to 36. The number of triplets appears to inversely correlate with receptor transcriptional activity, conditioning the peripheral effects [...] Read more.
Background: Exon 1 of the gene encoding for the androgen receptor (AR) contains a polymorphic sequence of variably repeated CAG triplets ranging from 11 to 36. The number of triplets appears to inversely correlate with receptor transcriptional activity, conditioning the peripheral effects of testosterone. Methods: We conducted a narrative review to explore the current evidence regarding the relationship between the number of CAG repeats and the human reproductive system. Results: We found several articles that investigate the relationship between CAG polymorphism and the male reproductive system, suggesting a possible modulatory effect on spermatogenesis, sexual function, prostate cancer, and testicular cancer. Similarly, in women, evidence has emerged to support a possible relationship between CAG repeat number and breast cancer, polycystic ovary syndrome (PCOS), and recurrent spontaneous abortions (RSAs). Unfortunately, the data in the current literature are largely discordant, largely due to an important influence of ethnicity on the variability of the CAG polymorphism, and partly due to the quality of the available studies. Conclusions: In the current state of the art, the study of CAG polymorphism does not have a sufficient literature base to allow its use in common clinical practice. However, it represents an interesting research target and, in the future, as new evidence emerges, it could help to elucidate some pathogenetic aspects of human reproductive disorders. Full article
Show Figures

Figure 1

25 pages, 7225 KiB  
Review
Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases
by Feng Pan, Pengning Xu, Christopher Roland, Celeste Sagui and Keith Weninger
Biomolecules 2024, 14(10), 1278; https://doi.org/10.3390/biom14101278 - 10 Oct 2024
Cited by 2 | Viewed by 2041
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders—known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)—which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA [...] Read more.
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders—known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)—which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts. Full article
(This article belongs to the Section Molecular Structure and Dynamics)
Show Figures

Figure 1

21 pages, 2095 KiB  
Article
Brain Volumetric Analysis Using Artificial Intelligence Software in Premanifest Huntington’s Disease Individuals from a Colombian Caribbean Population
by Margarita R. Ríos-Anillo, Mostapha Ahmad, Johan E. Acosta-López, Martha L. Cervantes-Henríquez, Maria C. Henao-Castaño, Maria T. Morales-Moreno, Fabián Espitia-Almeida, José Vargas-Manotas, Cristian Sánchez-Barros, David A. Pineda and Manuel Sánchez-Rojas
Biomedicines 2024, 12(10), 2166; https://doi.org/10.3390/biomedicines12102166 - 24 Sep 2024
Viewed by 1563
Abstract
Background and objectives: The premanifest phase of Huntington’s disease (HD) is characterized by the absence of motor symptoms and exhibits structural changes in imaging that precede clinical manifestation. This study aimed to analyze volumetric changes identified through brain magnetic resonance imaging (MRI) processed [...] Read more.
Background and objectives: The premanifest phase of Huntington’s disease (HD) is characterized by the absence of motor symptoms and exhibits structural changes in imaging that precede clinical manifestation. This study aimed to analyze volumetric changes identified through brain magnetic resonance imaging (MRI) processed using artificial intelligence (AI) software in premanifest HD individuals, focusing on the relationship between CAG triplet expansion and structural biomarkers. Methods: The study included 36 individuals descending from families affected by HD in the Department of Atlántico. Sociodemographic data were collected, followed by peripheral blood sampling to extract genomic DNA for quantifying CAG trinucleotide repeats in the Huntingtin gene. Brain volumes were evaluated using AI software (Entelai/IMEXHS, v4.3.4) based on MRI volumetric images. Correlations between brain volumes and variables such as age, sex, and disease status were determined. All analyses were conducted using SPSS (v. IBM SPSS Statistics 26), with significance set at p < 0.05. Results: The analysis of brain volumes according to CAG repeat expansion shows that individuals with ≥40 repeats evidence significant increases in cerebrospinal fluid (CSF) volume and subcortical structures such as the amygdalae and left caudate nucleus, along with marked reductions in cerebral white matter, the cerebellum, brainstem, and left pallidum. In contrast, those with <40 repeats show minimal or moderate volumetric changes, primarily in white matter and CSF. Conclusions: These findings suggest that CAG expansion selectively impacts key brain regions, potentially influencing the progression of Huntington’s disease, and that AI in neuroimaging could identify structural biomarkers long before clinical symptoms appear. Full article
Show Figures

Figure 1

11 pages, 864 KiB  
Article
The New Face of Dynamic Mutation—The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17
by Dorota Hoffman-Zacharska and Anna Sulek
Int. J. Mol. Sci. 2024, 25(15), 8190; https://doi.org/10.3390/ijms25158190 - 26 Jul 2024
Cited by 1 | Viewed by 1364
Abstract
Since 1991, several genetic disorders caused by unstable trinucleotide repeats (TNRs) have been identified, collectively referred to as triplet repeat diseases (TREDs). They share a common mutation mechanism: the expansion of repeats (dynamic mutations) due to the propensity of repeated sequences to form [...] Read more.
Since 1991, several genetic disorders caused by unstable trinucleotide repeats (TNRs) have been identified, collectively referred to as triplet repeat diseases (TREDs). They share a common mutation mechanism: the expansion of repeats (dynamic mutations) due to the propensity of repeated sequences to form unusual DNA structures during replication. TREDs are characterized as neurodegenerative diseases or complex syndromes with significant neurological components. Spinocerebellar ataxia type 17 (SCA17) falls into the former category and is caused by the expansion of mixed CAA/CAG repeats in the TBP gene. To date, a five-unit organization of this region [(CAG)3 (CAA)3] [(CAG)n] [CAA CAG CAA] [(CAG)n] [CAA CAG], with expansion in the second [(CAG)n] unit being the most common, has been proposed. In this study, we propose an alternative organization scheme for the repeats. A search of the PubMed database was conducted to identify articles reporting both the number and composition of GAC/CAA repeats in TBP alleles. Nineteen reports were selected. The sequences of all identified CAG/CAA repeats in the TBP locus, including 67 cases (probands and b relatives), were analyzed in terms of their repetition structure and stability in inheritance, if possible. Based on the analysis of three units [(CAG)3 (CAA)2] [CAA (CAG)n CAA CAG] [CAA (CAG)n CAA CAG], the organization of repeats is proposed. Detailed analysis of the CAG/CAA repeat structure, not just the number of repeats, in TBP-expanded alleles should be performed, as it may have a prognostic value in the prediction of stability/instability during transmission and the possible anticipation of the disease. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 1732 KiB  
Article
Preimplantation Genetic Testing of Spinocerebellar Ataxia Type 3/Machado–Joseph Disease—Robust Tools for Direct and Indirect Detection of the ATXN3 (CAG)n Repeat Expansion
by Mulias Lian, Vivienne J. Tan, Riho Taguchi, Mingjue Zhao, Gui-Ping Phang, Arnold S. Tan, Shuling Liu, Caroline G. Lee and Samuel S. Chong
Int. J. Mol. Sci. 2024, 25(15), 8073; https://doi.org/10.3390/ijms25158073 - 24 Jul 2024
Viewed by 1381
Abstract
Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple [...] Read more.
Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD. Full article
Show Figures

Figure 1

13 pages, 2670 KiB  
Article
Elucidating the Impact of Deleterious Mutations on IGHG1 and Their Association with Huntington’s Disease
by Alaa Shafie, Amal Adnan Ashour, Farah Anjum, Anas Shamsi and Md. Imtaiyaz Hassan
J. Pers. Med. 2024, 14(4), 380; https://doi.org/10.3390/jpm14040380 - 1 Apr 2024
Cited by 3 | Viewed by 1847
Abstract
Huntington’s disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite [...] Read more.
Huntington’s disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis. Full article
(This article belongs to the Special Issue Personalized Treatment for Musculoskeletal Diseases)
Show Figures

Figure 1

8 pages, 482 KiB  
Brief Report
The Huntington’s Disease Gene in an Italian Cohort of Patients with Bipolar Disorder
by Camilla Ferrari, Elena Capacci, Silvia Bagnoli, Assunta Ingannato, Sandro Sorbi and Benedetta Nacmias
Genes 2023, 14(9), 1681; https://doi.org/10.3390/genes14091681 - 25 Aug 2023
Viewed by 1523
Abstract
Background and objectives: Huntington’s disease (HD) is characterized by motor, cognitive and psychiatric manifestations and caused by an expansion of CAG repeats over 35 triplets on the huntingtin (HTT) gene. However, expansions in the range 27–35 repeats (intermediate allele) can be [...] Read more.
Background and objectives: Huntington’s disease (HD) is characterized by motor, cognitive and psychiatric manifestations and caused by an expansion of CAG repeats over 35 triplets on the huntingtin (HTT) gene. However, expansions in the range 27–35 repeats (intermediate allele) can be associated with pathological phenotypes. The onset of HD is conventionally defined by the onset of motor symptoms, but psychiatric disturbances can precede the motor phase by up to twenty years. The aims of the present study are to identify HD patients in the pre-motor phase of the disease among patients diagnosed with bipolar disorders and evaluate any differences between bipolar patients carrying the normal HTT allele and patients with the expanded HTT gene. Methods: We assessed the HTT genotype in an Italian cohort of 69 patients who were affected by either type 1 or type 2 bipolar disorder. Results: No patient was found to be a carrier of the pathological HTT allele, but 10% of bipolar subjects carried an intermediate allele. Carriers of the intermediate allele were older at the onset of psychiatric symptoms than non-carriers. Conclusion: The pathological HTT gene was not associated with bipolar disorder, while we found a higher frequency of the intermediate allele among the bipolar population with respect to healthy controls. The identification of this subset of bipolar subjects has implications for the clinical management of patients and their family members and promotes further investigation into possible pathological mechanisms common to both HD and bipolar disorder. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 1540 KiB  
Article
Identification of Proteins Specifically Assembled on a Stem-Loop Composed of a CAG Triplet Repeat
by Robert P. Fuchs, Asako Isogawa, Joao A. Paulo and Shingo Fujii
DNA 2023, 3(2), 109-118; https://doi.org/10.3390/dna3020009 - 6 Jun 2023
Cited by 1 | Viewed by 2302
Abstract
Human genomic DNA contains a number of diverse repetitive sequence motifs, often identified as fragile sites leading to genetic instability. Among them, expansion events occurring at triplet repeats have been extensively studied due to their association with neurological disorders, including Huntington’s disease (HD). [...] Read more.
Human genomic DNA contains a number of diverse repetitive sequence motifs, often identified as fragile sites leading to genetic instability. Among them, expansion events occurring at triplet repeats have been extensively studied due to their association with neurological disorders, including Huntington’s disease (HD). In the case of HD, expanded CAG triplet repeats in the HTT gene are thought to cause the onset. The expansion of CAG triplet repeats is believed to be triggered by the emergence of stem-loops composed of CAG triplet repeats, while the underlying molecular mechanisms are largely unknown. Therefore, identifying proteins recruited on such stem loops would be useful to understand the molecular mechanisms leading to the genetic instability of CAG triplet repeats. We previously developed a plasmid DNA pull-down methodology that captures proteins specifically assembled on any sequence of interest using nuclear extracts. Analysis by Mass Spectrometry revealed that among the proteins specifically bound to a stem-loop composed of CAG triplet repeats, many turned out to belong to DNA repair pathways. We expect our data set to represent a useful entry point for the design of assays allowing the molecular mechanisms of genetic instability at CAG triplet repeats to be explored. Full article
Show Figures

Graphical abstract

29 pages, 4289 KiB  
Review
Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington’s Disease
by Francesco D’Egidio, Vanessa Castelli, Annamaria Cimini and Michele d’Angelo
Antioxidants 2023, 12(3), 571; https://doi.org/10.3390/antiox12030571 - 24 Feb 2023
Cited by 24 | Viewed by 3142
Abstract
Huntington’s Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. [...] Read more.
Huntington’s Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell’s answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system. Full article
(This article belongs to the Special Issue Redox Signaling Regulation in Neurological Disorders)
Show Figures

Graphical abstract

16 pages, 1226 KiB  
Review
Mechanistic Insights and Potential Therapeutic Approaches in PolyQ Diseases via Autophagy
by Mukul Jain, Nil Patil, Gholamreza Abdi, Maryam Abbasi Tarighat, Arifullah Mohammed, Muhammad Rajaei Ahmad Mohd Zain and Khang Wen Goh
Biomedicines 2023, 11(1), 162; https://doi.org/10.3390/biomedicines11010162 - 9 Jan 2023
Cited by 5 | Viewed by 3455
Abstract
Polyglutamine diseases are a group of congenital neurodegenerative diseases categorized with genomic abnormalities in the expansion of CAG triplet repeats in coding regions of specific disease-related genes. Protein aggregates are the toxic hallmark for polyQ diseases and initiate neuronal death. Autophagy is a [...] Read more.
Polyglutamine diseases are a group of congenital neurodegenerative diseases categorized with genomic abnormalities in the expansion of CAG triplet repeats in coding regions of specific disease-related genes. Protein aggregates are the toxic hallmark for polyQ diseases and initiate neuronal death. Autophagy is a catabolic process that aids in the removal of damaged organelles or toxic protein aggregates, a process required to maintain cellular homeostasis that has the potential to fight against neurodegenerative diseases, but this pathway gets affected under diseased conditions, as there is a direct impact on autophagy-related gene expression. The increase in the accumulation of autophagy vesicles reported in neurodegenerative diseases was due to an increase in autophagy or may have been due to a decrease in autophagy flux. These reports suggested that there is a contribution of autophagy in the pathology of diseases and regulation in the process of autophagy. It was demonstrated in various disease models of polyQ diseases that autophagy upregulation by using modulators can enhance the dissolution of toxic aggregates and delay disease progression. In this review, interaction of the autophagy pathway with polyQ diseases was analyzed, and a therapeutic approach with autophagy inducing drugs was established for disease pathogenesis. Full article
Show Figures

Figure 1

13 pages, 2689 KiB  
Article
A Novel Triplet-Primed PCR Assay to Detect the Full Range of Trinucleotide CAG Repeats in the Huntingtin Gene (HTT)
by Alessandro De Luca, Annunziata Morella, Federica Consoli, Sergio Fanelli, Julie R. Thibert, Sarah Statt, Gary J. Latham and Ferdinando Squitieri
Int. J. Mol. Sci. 2021, 22(4), 1689; https://doi.org/10.3390/ijms22041689 - 8 Feb 2021
Cited by 12 | Viewed by 7160
Abstract
The expanded CAG repeat number in HTT gene causes Huntington disease (HD), which is a severe, dominant neurodegenerative illness. The accurate determination of the expanded allele size is crucial to confirm the genetic status in symptomatic and presymptomatic at-risk subjects and avoid genetic [...] Read more.
The expanded CAG repeat number in HTT gene causes Huntington disease (HD), which is a severe, dominant neurodegenerative illness. The accurate determination of the expanded allele size is crucial to confirm the genetic status in symptomatic and presymptomatic at-risk subjects and avoid genetic polymorphism-related false-negative diagnoses. Precise CAG repeat number determination is critical to discriminate the cutoff between unexpanded and intermediate mutable alleles (IAs, 27–35 CAG) as well as between IAs and pathological, low-penetrance alleles (i.e., 36–39 CAG repeats), and it is also critical to detect large repeat expansions causing pediatric HD variants. We analyzed the HTT-CAG repeat number of 14 DNA reference materials and of a DNA collection of 43 additional samples carrying unexpanded, IAs, low and complete penetrance alleles, including large (>60 repeats) and very large (>100 repeats) expansions using a novel triplet-primed PCR-based assay, the AmplideX PCR/CE HTT Kit. The results demonstrate that the method accurately genotypes both normal and expanded HTT-CAG repeat numbers and reveals previously undisclosed and very large CAG expansions >200 repeats. We also show that this technique can improve genetic test reliability and accuracy by detecting CAG expansions in samples with sequence variations within or adjacent to the repeat tract that cause allele drop-outs or inaccuracies using other PCR methods. Full article
(This article belongs to the Special Issue Molecular Basis and Molecular Targets in Huntington’s Disease)
Show Figures

Figure 1

17 pages, 908 KiB  
Review
CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities
by Renée H.L. Raaijmakers, Lise Ripken, C. Rosanne M. Ausems and Derick G. Wansink
Int. J. Mol. Sci. 2019, 20(15), 3689; https://doi.org/10.3390/ijms20153689 - 27 Jul 2019
Cited by 26 | Viewed by 7308
Abstract
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the [...] Read more.
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. Full article
(This article belongs to the Special Issue Myotonic Dystrophy: From Molecular Pathogenesis to Therapeutics)
Show Figures

Graphical abstract

14 pages, 310 KiB  
Review
Disruption of Axonal Transport in Motor Neuron Diseases
by Kensuke Ikenaka, Masahisa Katsuno, Kaori Kawai, Shinsuke Ishigaki, Fumiaki Tanaka and Gen Sobue
Int. J. Mol. Sci. 2012, 13(1), 1225-1238; https://doi.org/10.3390/ijms13011225 - 23 Jan 2012
Cited by 65 | Viewed by 11038
Abstract
Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, [...] Read more.
Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in their genes cause motor neuron degeneration in humans and rodents. Axonal transport defects are among the early molecular events leading to neurodegeneration in mouse models of amyotrophic lateral sclerosis (ALS). Gene expression profiles indicate that dynactin-1 mRNA is downregulated in degenerating spinal motor neurons of autopsied patients with sporadic ALS. Dynactin-1 mRNA is also reduced in the affected neurons of a mouse model of spinal and bulbar muscular atrophy, a motor neuron disease caused by triplet CAG repeat expansion in the gene encoding the androgen receptor. Pathogenic androgen receptor proteins also inhibit kinesin-1 microtubule-binding activity and disrupt anterograde axonal transport by activating c-Jun N-terminal kinase. Disruption of axonal transport also underlies the pathogenesis of spinal muscular atrophy and hereditary spastic paraplegias. These observations suggest that the impairment of axonal transport is a key event in the pathological processes of motor neuron degeneration and an important target of therapy development for motor neuron diseases. Full article
Show Figures

Graphical abstract

Back to TopTop