Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = CAP-AES

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2372 KB  
Article
Sustainable Healthcare Infrastructure: Design-Phase Evaluation of LEED Certification and Energy Efficiency at Istanbul University’s Surgical Sciences Building
by Cemil Akçay and Mahmut Sarı
Buildings 2025, 15(14), 2385; https://doi.org/10.3390/buildings15142385 - 8 Jul 2025
Cited by 1 | Viewed by 572
Abstract
The rapid growth of the global population and associated increases in resource consumption have accelerated environmental degradation, making sustainable design and construction processes increasingly essential. The construction sector holds significant potential for reducing environmental impacts, especially through sustainability-focused certification systems such as LEED. [...] Read more.
The rapid growth of the global population and associated increases in resource consumption have accelerated environmental degradation, making sustainable design and construction processes increasingly essential. The construction sector holds significant potential for reducing environmental impacts, especially through sustainability-focused certification systems such as LEED. This study evaluates the projected energy efficiency and sustainability performance of the Surgical Sciences Building at Istanbul University’s Çapa Campus, which was designed with the goal of achieving LEED Gold certification. The assessment is based on design-phase data and conducted prior to construction. Energy performance analyses were carried out using DesignBuilder software, supported by the LEED Assessment Report and Energy Audit Report. According to simulation results, approximately 30% savings in energy consumption and water usage are expected. In addition, the process-oriented LEED approach is expected to result in a total CO2 emission savings of approximately 570 tonnes, while renewable energy systems are expected to meet approximately 13% of the building’s primary energy demand and reduce CO2 emissions by approximately 151 tonnes per year. Waste management strategies developed for both the construction and operational phases are aligned with LEED criteria and aim to achieve up to 80% recycling rates. The findings demonstrate that LEED certification, when employed as a process-oriented design and decision-making tool rather than a result-oriented label, can enable sustainable strategies to be integrated from the earliest stages of project development. Particularly for complex healthcare buildings, embedding LEED principles into the design process has strong potential to enhance environmental performance. Although based on a single case study, this research provides valuable insight into the broader applicability of LEED in diverse building types and geographic contexts. Full article
(This article belongs to the Special Issue Sustainability in Construction Project Management and Infrastructure)
Show Figures

Figure 1

19 pages, 2694 KB  
Article
Biphasic CAPA-IVM Improves Equine Oocyte Quality and Subsequent Embryo Development Without Inducing Genetic Aberrations
by Muhammad Fakhar-I-Adil, Daniel Angel-Velez, Emin Araftpoor, Qurratul Ain Amin, Mohamed Hedia, Marcel Bühler, Kris Gevaert, Björn Menten, Ann Van Soom, Susana Marina Chuva de Sousa Lopes, Dominic Stoop, Chloë De Roo, Katrien Smits and Björn Heindryckx
Int. J. Mol. Sci. 2025, 26(12), 5495; https://doi.org/10.3390/ijms26125495 - 8 Jun 2025
Viewed by 1527
Abstract
In vitro maturation (IVM) of oocytes retrieved from ovum pick-up (OPU) or ovarian tissue (OT) is a standard approach for patients with specific conditions where prior hormonal stimulation is contraindicated. However, the developmental competence of oocytes matured in vitro is still inferior to [...] Read more.
In vitro maturation (IVM) of oocytes retrieved from ovum pick-up (OPU) or ovarian tissue (OT) is a standard approach for patients with specific conditions where prior hormonal stimulation is contraindicated. However, the developmental competence of oocytes matured in vitro is still inferior to that of oocytes matured in vivo. Capacitation IVM (CAPA-IVM) includes an extra step of pre-maturation culture (PMC) with c-type natriuretic peptide (CNP) as a meiotic arrestor to better synchronize cytoplasmic and nuclear maturity in oocytes by allowing the cytoplasm additional time to acquire essential components critical for optimal competency. This study aims to evaluate the effect of CAPA-IVM on equine oocyte quality and developmental competence. Immature cumulus–oocyte complexes (COCs) were retrieved from slaughterhouse ovaries and matured in vitro either in CAPA-IVM (short 6 h, long 24 h pre-maturation) or standard IVM. Mature oocytes from each group were analyzed for calcium-releasing potential (n = 52) and single-oocyte proteomics (n = 44), and embryo development (n = 229) was assessed after fertilization with piezo-drilled intracytoplasmic sperm injection (ICSI). Genetic analysis of developed blastocysts (n = 41) was performed to detect chromosomal aberrations. Our findings demonstrate that CAPA-IVM of equine COCs yields significantly higher maturation rates than controls. Moreover, short CAPA-IVM with six hours pre-maturation culture showed substantially higher embryo development potential than the control group (20/69 vs. 9/63, respectively). Genetic analysis revealed a high euploidy rate in equine blastocysts regardless of the maturation conditions. Live calcium imaging of the fertilized oocytes demonstrated that the majority of oocytes displayed non-continuous calcium oscillation patterns, irrespective of maturation conditions. Single-oocyte proteomics reveals a comparable proteomic landscape between mature oocytes subjected to short CAPA-IVM and standard IVM. However, we identified four enriched gene sets with positive enrichment scores after short CAPA-IVM, related to cytoskeleton regulation, ribosomal function, and cytosolic components. Our findings indicate that CAPA-IVM holds the potential to improve oocyte quality and competence in horses. However, further fine-tuning of culture conditions would benefit the effective use of these IVM systems. Moreover, given that the mare serves as an excellent model for human reproduction, the molecular trends identified in this study could provide valuable insights for advancing human artificial reproductive technologies. Full article
(This article belongs to the Special Issue Molecular Research on Embryo Developmental Potential)
Show Figures

Figure 1

12 pages, 277 KB  
Article
Monitoring the Occurrence of Aspergillus in the Air of Intensive Care Units
by Anna Inglot, Agnieszka Gniadek, Zuzanna Tokarz, Wirginia Krzyściak, Monika Papież and Paweł Krzyściak
Microorganisms 2025, 13(5), 1099; https://doi.org/10.3390/microorganisms13051099 - 9 May 2025
Viewed by 1162
Abstract
Poor air quality within hospitals can contribute to a range of health issues, collectively known as sick hospital syndrome, encompassing respiratory, skin, and nonspecific symptoms. Aspergillus poses a significant risk of severe respiratory infections, particularly within intensive care unit (ICU) patients often with [...] Read more.
Poor air quality within hospitals can contribute to a range of health issues, collectively known as sick hospital syndrome, encompassing respiratory, skin, and nonspecific symptoms. Aspergillus poses a significant risk of severe respiratory infections, particularly within intensive care unit (ICU) patients often with compromised immune systems. This study was conducted in the intensive care units of three selected hospitals in Cracow, Poland. Air samples were obtained using the single-stage impactor MAS-100 NT Ex (Merck). The air samples were taken from each ward, seasonally, four times a year. Sampling of intensive care units’ air for Aspergillus revealed the significant diversity in fungal concentration and unveiled seasonal fluctuations in culturable fungi levels. The highest concentration of Aspergillus species complexes was detected during autumn, while the lowest was in spring. The disturbing occurrence of Aspergillus in hospitals’ air emphasizes the importance of monitoring fungal air bioburden and assessing air control efficiency and highlights the urgent need to develop and validate microbiological standards for fungal air contamination in hospitals. Full article
13 pages, 240 KB  
Article
Effect of Secondary Infections on the Outcomes of Patients with Hematological Malignancies and SARS-CoV-2 Infection: Results from the HM-COV 3.0 Study
by Flavia Petrucci, Chiara Pellicano, Francesco Cogliati Dezza, Serena Valeri, Sara Covino, Francesco Iannazzo, Francesca Infante, Antonietta Gigante, Federica Sacco, Agnese Viscido, Alessandra Iacovelli, Edoardo Rosato, Paolo Palange, Claudio Maria Mastroianni and Alessandra Oliva
Viruses 2025, 17(2), 274; https://doi.org/10.3390/v17020274 - 16 Feb 2025
Viewed by 989
Abstract
Patients with hematological malignancies (HMs) are at higher risk of severe COVID-19 and secondary infections, which further complicate their outcomes. This study evaluated the impact of secondary infections (SIs) on mortality in hospitalized HM patients with SARS-CoV-2 infection and identified risk factors associated [...] Read more.
Patients with hematological malignancies (HMs) are at higher risk of severe COVID-19 and secondary infections, which further complicate their outcomes. This study evaluated the impact of secondary infections (SIs) on mortality in hospitalized HM patients with SARS-CoV-2 infection and identified risk factors associated with SIs. We included 217 patients with HMs and COVID-19 admitted to a tertiary hospital in Rome, from April 2020 to September 2022. SIs occurred in 44.2% of patients, with bloodstream infections (42.7%) and respiratory infections (30.5%) being most frequent; among the latter, COVID-19-associated pulmonary aspergillosis (CAPA) was observed in 41.4% of cases. Viral reactivations, predominantly CMV, occurred in 9.2% of patients. The overall mortality rate was 29%, with higher mortality observed in patients with SIs (47.4% vs. 14.7%, p < 0.01). Risk factors for SIs included severe COVID-19 (OR = 2.957, p < 0.05) and prolonged hospitalization (OR = 1.095, p < 0.001). Severe COVID-19 (OR = 8.229, p < 0.001), intensive care unit (ICU) admission (OR = 15.232, p < 0.001), chronic steroid therapy (OR = 2.803, p < 0.05), SIs (OR = 2.892, p < 0.05), and viral reactivation (OR = 6.269, p < 0.01) were independent predictors of mortality. SIs and viral reactivations are common in patients with HMs and SARS-CoV-2 infection and significantly increase mortality, highlighting the need for timely management and preventive strategies in this vulnerable population. Full article
(This article belongs to the Special Issue COVID-19 Complications and Co-infections)
22 pages, 1765 KB  
Article
Healthy Lifestyle Changes Improve Cortisol Levels and Liver Steatosis in MASLD Patients: Results from a Randomized Clinical Trial
by Claudia Beatrice Bagnato, Antonella Bianco, Caterina Bonfiglio, Isabella Franco, Nicola Verrelli, Nicola Carella, Endrit Shahini, Marianna Zappimbulso, Vito Giannuzzi, Pasqua Letizia Pesole, Anna Ancona and Gianluigi Giannelli
Nutrients 2024, 16(23), 4225; https://doi.org/10.3390/nu16234225 - 6 Dec 2024
Cited by 5 | Viewed by 5615
Abstract
Background: Steatotic liver disease associated with metabolic dysfunction (MASLD) affects up to about 30% of the general adult population and is closely related to obesity and the metabolic syndrome. Cortisol, a stress-related hormone contributing to hepatic fat accumulation and insulin resistance, also promotes [...] Read more.
Background: Steatotic liver disease associated with metabolic dysfunction (MASLD) affects up to about 30% of the general adult population and is closely related to obesity and the metabolic syndrome. Cortisol, a stress-related hormone contributing to hepatic fat accumulation and insulin resistance, also promotes progression of the disease. The study aims to investigate the impact of lifestyle modifications on cortisol levels and hepatic steatosis in patients with MASLD. Methods: In a 16-week three-arm randomized trial, 42 patients were randomly assigned to three groups who received dietary advice (CG), dietary advice combined with aerobic exercise (AE + DA), or dietary advice with high-intensity interval training (HIIT + DA). Before the start, after 2 months of intervention, and at the end of the project, medical evaluations, routine biochemical assessments, and psychological questionnaires were analyzed. At baseline and at the end of 4 months, hepatic steatosis was evaluated by Fibroscan®. Results: In the study population, severe hepatic steatosis (74%) and obesity (98%) were prevalent at the beginning of the study. A statistically significant (p-value = 0.001) reduction in circulating cortisol levels was observed over time in the two groups doing exercise, especially in HIIT + DA (p-value = 0.006). Hepatic steatosis, assessed by Fibroscan®, disappeared in 10 participants (CAP value < 248, p-value = 0.003). CAP values and waist circumference decreased in all groups, statistically significantly in the AE + DA group (p-value = 0.005; p-value = 0.04, respectively). Conclusions: The study emphasizes the benefits of combining diet and exercise in managing MASLD. HIIT + DA significantly decreased cortisol levels, while AE + DA was the most potent intervention for reducing hepatic steatosis. Full article
(This article belongs to the Special Issue Exercise and Nutrition Enhancement of Health)
Show Figures

Figure 1

6 pages, 725 KB  
Communication
Water-Mediated Synthesis of (E)-3-(1-Methyl-1H-benzo[d]imidazol-5-yl)-N-phenethylacrylamide, a Caffeic Acid Phenethyl Amide Analogue
by Muppidi Subbarao and Sean M. Kerwin
Molbank 2024, 2024(4), M1915; https://doi.org/10.3390/M1915 - 12 Nov 2024
Viewed by 1213
Abstract
Caffeic acid phenethyl ester (CAPE) is a phenolic natural product with diverse biological activities, notably anticancer properties. However, its ester group is metabolically unstable. The amide derivative, CAPA, offers improved metabolic stability to esterases but still possesses a metabolically liable catechol group. In [...] Read more.
Caffeic acid phenethyl ester (CAPE) is a phenolic natural product with diverse biological activities, notably anticancer properties. However, its ester group is metabolically unstable. The amide derivative, CAPA, offers improved metabolic stability to esterases but still possesses a metabolically liable catechol group. In this work, we describe the synthesis of a novel CAPA analogue in which the catechol is replaced with a benzimidazole bioisostere via a water-mediated Wittig reaction. Full article
(This article belongs to the Section Natural Product Chemistry)
Show Figures

Graphical abstract

11 pages, 3897 KB  
Article
Flow and On-Water Synthesis and Cancer Cell Cytotoxicity of Caffeic Acid Phenethyl Amide (CAPA) Derivatives
by Anthony Saucedo, Muppidi Subbarao, Mauricio Jemal, Nakya L. Mesa-Diaz, Jadyn L. Smith, Alexandra Vernaza, Liqin Du and Sean M. Kerwin
Int. J. Mol. Sci. 2024, 25(15), 8051; https://doi.org/10.3390/ijms25158051 - 24 Jul 2024
Cited by 1 | Viewed by 1553
Abstract
Caffeic acid phenethyl ester (CAPE) is a phenolic natural product with a wide range of biological activities, including anticancer activity; however, the ester group of CAPE is metabolically labile. The corresponding amide, CAPA, has improved metabolic stability but limited anticancer activity relative to [...] Read more.
Caffeic acid phenethyl ester (CAPE) is a phenolic natural product with a wide range of biological activities, including anticancer activity; however, the ester group of CAPE is metabolically labile. The corresponding amide, CAPA, has improved metabolic stability but limited anticancer activity relative to CAPE. We report the synthesis using flow and on-water Wittig reaction approaches of five previously reported and five novel CAPA analogues. All of these analogues lack the reactive catechol functionality of CAPA and CAPE. Cytotoxicity studies of CAPE, CAPA, and these CAPA analogues in HeLa and BE(2)-C cells were carried out. Surprisingly, we found that CAPA is cytotoxic against the neuroblastoma BE(2)-C cell line (IC50 = 12 µM), in contrast to the weak activity of CAPA against HeLa cells (IC50 = 112 µM), and the literature reports of the absence of activity for CAPA against a variety of other cancer cell lines. One novel CAPA analogue, 3f, was identified as having cytotoxic activity similar to CAPE in HeLa cells (IC50 = 63 µM for 3f vs. 32 µM for CAPE), albeit with lower activity against BE(2)-C cells (IC50 = 91 µM) than CAPA. A different CAPA analogue, 3g, was found to have similar effects against BE(2)-C cells (IC50 = 92 µM). These results show that CAPA is uniquely active against neuroblastoma cells and that specific CAPA analogues that are predicted to be more metabolically stable than CAPE can reproduce CAPA’s activity against neuroblastoma cells and CAPE’s activity against HeLa cells. Full article
(This article belongs to the Special Issue Molecular Functions of Polyphenols in Health and Diseases)
Show Figures

Graphical abstract

14 pages, 2833 KB  
Article
Protective Effect of Indole-3-Aldehyde in Murine COVID-19-Associated Pulmonary Aspergillosis
by Marilena Pariano, Anna Gidari, Claudia Stincardini, Sara Pierucci, Sabrina Bastianelli, Matteo Puccetti, Stefano Giovagnoli, Marina M. Bellet, Consuelo Fabi, Roberto Castronari, Cinzia Antognelli, Claudio Costantini, Maurizio Ricci, Daniela Francisci and Luigina Romani
J. Fungi 2024, 10(7), 510; https://doi.org/10.3390/jof10070510 - 22 Jul 2024
Cited by 2 | Viewed by 1794
Abstract
Aspergillus fumigatus is an environmental fungus recently included in the fungal high-priority pathogens by the World Health Organization. While immunodeficiency and/or pre-existing lung damage represent a well-recognized fertile ground for fungal growth, it is increasingly being recognized that severe viral infections may similarly [...] Read more.
Aspergillus fumigatus is an environmental fungus recently included in the fungal high-priority pathogens by the World Health Organization. While immunodeficiency and/or pre-existing lung damage represent a well-recognized fertile ground for fungal growth, it is increasingly being recognized that severe viral infections may similarly favor A. fumigatus colonization and infection, as recently experienced in the Coronavirus disease 2019 (COVID-19) pandemic. Herein, in a murine model of COVID-19-associated pulmonary aspergillosis (CAPA), obtained by the concomitant exposure to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein and A. fumigatus conidia, we found that the microbial compound indole-3-aldehyde (3-IAld) was able to ameliorate CAPA by working at multiple levels during viral infection and fungal superinfection, including epithelial barrier protection, promotion of antiviral responses, and limiting viral replication. As a consequence, 3-IAld limited the pathogenic sequelae of fungal superinfection as revealed by the controlled fungal burden and restrained inflammatory pathology. These results point to indole compounds as potential agents to prevent CAPA. Full article
(This article belongs to the Special Issue Fungal Immunology and Vaccinology)
Show Figures

Figure 1

16 pages, 2220 KB  
Review
Review of Integrated Management Systems to Re-Engineer Existing Nonconformances Troubleshooting System
by Matshidiso Moso and Oludolapo Akanni Olanrewaju
Safety 2024, 10(3), 58; https://doi.org/10.3390/safety10030058 - 5 Jul 2024
Viewed by 1934
Abstract
Total quality management (TQM) is a strategic philosophy that has adopted kaizen activities which drives the business to carry out activities effectively to yield the best desired output, hence, a profitable organization. The kaizen philosophy acts as a catalyst in productivity rate and [...] Read more.
Total quality management (TQM) is a strategic philosophy that has adopted kaizen activities which drives the business to carry out activities effectively to yield the best desired output, hence, a profitable organization. The kaizen philosophy acts as a catalyst in productivity rate and integrated management systems (IMS) which results in drastic improvements. When the nonconformity arises within the process, the accuracy of the problem solving determines quality of preventive action, therefore the preventive action should be accompanied by the opportunity of improvement from the raised nonconformance. This research seeks to add more knowledge and upgrade technology of problem-solving models relating to the integrated management systems by examining various troubleshooting models for problem solving and preventive action related to quality nonconformances, safety incidents and engineering breakdowns. Hence, the aim of this research is for troubleshooting model technique enhancement for issues related to process engineering, quality management systems and occupational health and safety by creating a model which analyses kaizen projects from the corrective and preventive action analysis of nonconformances. The proposed troubleshooting model was developed using lean techniques and risk rating tools; it was then applied to the case study company for simulation and the outcomes resulted in the closure of nonconformances and continual improvement of future projects. The proposed model is more advantageous to the manufacturing industries seeking to improve their Corrective Action and Preventive Action (CAPA) systems. Full article
Show Figures

Figure 1

22 pages, 5448 KB  
Article
IMERG in the Canadian Precipitation Analysis (CaPA) System for Winter Applications
by Stéphane Bélair, Pei-Ning Feng, Franck Lespinas, Dikra Khedhaouiria, David Hudak, Daniel Michelson, Catherine Aubry, Florence Beaudry, Marco L. Carrera and Julie M. Thériault
Atmosphere 2024, 15(7), 763; https://doi.org/10.3390/atmos15070763 - 27 Jun 2024
Viewed by 1549
Abstract
Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation [...] Read more.
Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation Measurement mission) into CaPA is examined in this study. Tests are conducted with CaPA’s 10 km deterministic version, evaluated over Canada and the northern part of the United States (USA). Maps from a case study show that IMERG plays a contradictory role in the production of CaPA’s precipitation analyses for a synoptic-scale winter storm over North America’s eastern coast. While its contribution appears to be physically correct over southern portions of the meteorological system, and early in its intensification phase, IMERG displays unrealistic spatial structures over land later in the system’s life cycle when it is located over northern (colder) areas. Objective evaluation of CaPA’s analyses when IMERG is assimilated without any restrictions shows an overall decrease in precipitation, which has a mixed effect (positive and negative) on the bias indicators. But IMERG’s influence on the Equitable Threat Score (ETS), a measure of CaPA’s analyses accuracy, is clearly negative. Using IMERG’s quality index (QI) to filter out areas where it is less accurate improves CaPA’s objective evaluation, leading to better ETS versus the control experiment in which no IMERG data are assimilated. Several diagnostics provide insight into the nature of IMERG’s contribution to CaPA. For the most successful configuration, with a QI threshold of 0.3, IMERG’s impact is mostly found in the warmer parts of the domain, i.e., in northern US states and in British Columbia. Spatial means of the temporal sums of absolute differences between CaPA’s analyses with and without IMERG indicate that this product also contributes meaningfully over land areas covered by snow, and areas where air temperature is below −2 °C (where precipitation is assumed to be in solid phase). Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 13283 KB  
Article
Quantitative Analysis of Morphology and Surface Properties of Poly(lactic acid)/Poly(ε-caprolactone)/Hydrophilic Nano-Silica Blends
by Sanja Mahović Poljaček, Dino Priselac, Tamara Tomašegović, Mirela Leskovac, Aleš Šoster and Urška Stanković Elesini
Polymers 2024, 16(12), 1739; https://doi.org/10.3390/polym16121739 - 19 Jun 2024
Cited by 3 | Viewed by 1660
Abstract
A quantitative analysis of the morphology, as well as an analysis of the distribution of components and surface/interfacial properties in poly(lactic acid)(PLA) InegoTM 3251D, poly(ε-caprolactone) (PCL) Capa 6800 and nano-silica (SiO2) Aerosil®200 blends, was conducted in this research. The [...] Read more.
A quantitative analysis of the morphology, as well as an analysis of the distribution of components and surface/interfacial properties in poly(lactic acid)(PLA) InegoTM 3251D, poly(ε-caprolactone) (PCL) Capa 6800 and nano-silica (SiO2) Aerosil®200 blends, was conducted in this research. The study aimed to improve the understanding of how PLA, PCL, and nano-SiO2 interact, resulting in the specific morphology and surface properties of the blends. Samples were produced by varying the concentration of all three components. They were analyzed using SEM, EDS mapping, water contact angle measurements, surface free energy calculation, adhesion parameter measurements, and FTIR-ATR spectroscopy. The results showed that the addition of SiO2 nanoparticles led to an increase in the contact angle of water, making the surface more hydrophobic. SEM images of the blends showed that increasing the PCL content reduced the size of spherical PCL elements in the blends. FTIR-ATR analysis showed that SiO2 nanoparticles influenced the structure ordering of PLA in the blend with equal portions of PLA and PCL. In the samples with a higher PCL content, the spherical elements present in the samples with a higher PLA/PCL ratio have been reduced, indicating better interactions at the interface between PLA, PCL, and SiO2. SEM-EDS mapping of the PLA/PCL 100/0 blend surfaces revealed the presence of SiO2 clusters and the silicon (Si) concentration reaching up to ten times higher than the nominal concentration of SiO2. However, with the addition of 3% SiO2 to the blend containing PCL, the structure became more granular. Specifically, Si protrusions in the sample PLA/PCL 90/10 with 3% SiO2 displayed 29.25% of Si, and the sample PLA/PCL 70/30 with 3% SiO2 displayed an average of 10.61% of Si at the protrusion locations. The results confirmed the affinity of SiO2 to be encapsulated by PCL. A better understanding of the interactions between the materials in the presented blends and the quantitative analysis of their morphology could improve the understanding of their properties and allow the optimization of their application for different purposes. Full article
Show Figures

Figure 1

19 pages, 17461 KB  
Article
Shear Performance and Damage Characterization of Prefabricated Basalt Fiber Reactive Powder Concrete Capping Beam Formwork Structure
by Yafeng Gong, Shuzheng Wu, Changyuan Ning, Xinpeng Hu, Zhongqiang Yi and Hongchi Du
Buildings 2024, 14(6), 1701; https://doi.org/10.3390/buildings14061701 - 7 Jun 2024
Cited by 1 | Viewed by 1071
Abstract
Basalt Fiber Reactive Powder Concrete (BFRPC) semi-prefabricated composite capping beam structures can effectively improve the shortcomings of ordinary concrete capping beams' construction difficulties and insufficient bearing capacity. In this study, with the objective of analyzing the shear damage and damage characteristics of a [...] Read more.
Basalt Fiber Reactive Powder Concrete (BFRPC) semi-prefabricated composite capping beam structures can effectively improve the shortcomings of ordinary concrete capping beams' construction difficulties and insufficient bearing capacity. In this study, with the objective of analyzing the shear damage and damage characteristics of a prefabricated BFRPC capping beam formwork, structural damage tests under different levels of loading were carried out to obtain the mechanical parameters of key nodes. Acoustic emission (AE) and Digital Image Correlation (DIC) techniques were used to acoustically and visually characterize the formwork damage. The research results showed that the damage stage of the capping beam formwork was divided, and an early damage warning method was proposed based on the acoustic parameters. Using the DIC technique to identify the crack width evolution pattern during the shear process, it was found that the cracks expanded steadily as the load increased. Combining the experimental and simulation results as well as the Subdivision Superposition Theory, a half-open stirrup strength discount factor β was introduced and suggested to take a value of 0.79. The formula for calculating the shear capacity of BFRPC capping beam formwork is proposed to provide a theoretical basis for its application in prefabricated assembled structures. Full article
(This article belongs to the Special Issue Recent Research Progress of UHPC in Structural Engineering)
Show Figures

Figure 1

8 pages, 377 KB  
Article
Impact and Occurrence of Herpesvirus and Aspergillosis Superinfection in Patients with Severe COVID-19 Pneumonia
by Antoinette D. Reichert, Júlia M. da Silva Voorham, Karin H. Groenewegen and Huub La van den Oever
COVID 2024, 4(5), 637-644; https://doi.org/10.3390/covid4050042 - 13 May 2024
Cited by 2 | Viewed by 1367
Abstract
Background: Pulmonary superinfections with Herpesviridae and Aspergillus spp. are common in severe coronavirus disease 2019 (COVID-19) pneumonia but their epidemiology and impact remain poorly understood. Methods: We conducted a retrospective observational study of 61 mechanically ventilated COVID-19 patients at Deventer Hospital’s ICU (2020–2021) [...] Read more.
Background: Pulmonary superinfections with Herpesviridae and Aspergillus spp. are common in severe coronavirus disease 2019 (COVID-19) pneumonia but their epidemiology and impact remain poorly understood. Methods: We conducted a retrospective observational study of 61 mechanically ventilated COVID-19 patients at Deventer Hospital’s ICU (2020–2021) who underwent bronchoalveolar lavage (BL) due to clinical deterioration. We analyzed blood and respiratory samples, treatment, and clinical outcomes. Results: Among 61 mechanically ventilated COVID-19 patients who underwent BL, 34 (55.7%) had superinfections, with 18 having COVID-19-associated pulmonary aspergillosis (CAPA), 7 having herpes simplex virus (HSV) infection, and 9 having both. Patients with HSV had later diagnoses (median 14 vs. 8 days, p = 0.014), longer mechanical ventilation (median 47 vs. 18.5 days, p = 0.015), and longer ICU stays (median 74 vs. 24 days, p = 0.021) compared to CAPA patients. At baseline, laboratory parameters and treatment (dexamethasone or tocilizumab) showed no significant association with superinfections. Mortality did not differ significantly among groups. Conclusion: In mechanically ventilated COVID-19 patients undergoing bronchoalveolar lavage, HSV reactivation occurred later in the course of illness and was associated with longer mechanical ventilation and ICU stays compared to CAPA. Baseline parameters did not predict superinfections. Full article
Show Figures

Figure 1

16 pages, 6039 KB  
Article
Preparations and Thermal Properties of PDMS-AlN-Al2O3 Composites through the Incorporation of Poly(Catechol-Amine)-Modified Boron Nitride Nanotubes
by Arni Gesselle Pornea, Duy Khoe Dinh, Zahid Hanif, Numan Yanar, Ki-In Choi, Min Seok Kwak and Jaewoo Kim
Nanomaterials 2024, 14(10), 847; https://doi.org/10.3390/nano14100847 - 13 May 2024
Cited by 4 | Viewed by 3735
Abstract
As one of the emerging nanomaterials, boron nitride nanotubes (BNNTs) provide promising opportunities for diverse applications due to their unique properties, such as high thermal conductivity, immense inertness, and high-temperature durability, while the instability of BNNTs due to their high surface induces agglomerates [...] Read more.
As one of the emerging nanomaterials, boron nitride nanotubes (BNNTs) provide promising opportunities for diverse applications due to their unique properties, such as high thermal conductivity, immense inertness, and high-temperature durability, while the instability of BNNTs due to their high surface induces agglomerates susceptible to the loss of their advantages. Therefore, the proper functionalization of BNNTs is crucial to highlight their fundamental characteristics. Herein, a simplistic low-cost approach of BNNT surface modification through catechol-polyamine (CAPA) interfacial polymerization is postulated to improve its dispersibility on the polymeric matrix. The modified BNNT was assimilated as a filler additive with AlN/Al2O3 filling materials in a PDMS polymeric matrix to prepare a thermal interface material (TIM). The resulting composite exhibits a heightened isotropic thermal conductivity of 8.10 W/mK, which is a ~47.27% increase compared to pristine composite 5.50 W/mK, and this can be ascribed to the improved BNNT dispersion forming interconnected phonon pathways and the thermal interface resistance reduction due to its augmented compatibility with the polymeric matrix. Moreover, the fabricated composite manifests a fire resistance improvement of ~10% in LOI relative to the neat composite sample, which can be correlated to the thermal stability shift in the TGA and DTA data. An enhancement in thermal permanence is stipulated due to a melting point (Tm) shift of ∼38.5 °C upon the integration of BNNT-CAPA. This improvement can be associated with the good distribution and adhesion of BNNT-CAPA in the polymeric matrix, integrated with its inherent thermal stability, good charring capability, and free radical scavenging effect due to the presence of CAPA on its surface. This study offers new insights into BNNT utilization and its corresponding incorporation into the polymeric matrix, which provides a prospective direction in the preparation of multifunctional materials for electric devices. Full article
(This article belongs to the Special Issue Thermally Conductive Nanomaterials and Their Applications)
Show Figures

Figure 1

13 pages, 732 KB  
Article
Nutritional Profiling of Underutilised Citrullus lanatus mucosospermus Seed Flour
by Olakunbi Olubi, Joseline Felix-Minnaar and Victoria A. Jideani
Appl. Sci. 2024, 14(9), 3709; https://doi.org/10.3390/app14093709 - 26 Apr 2024
Viewed by 2283
Abstract
The seed of Citrullus lanatus mucosospermus, known as egusi, is versatile and explored for its oil and flour functionality. Raw flour can be used as a raw material in a nutritional program due to its oil-rich, remarkably high protein content, and richness in [...] Read more.
The seed of Citrullus lanatus mucosospermus, known as egusi, is versatile and explored for its oil and flour functionality. Raw flour can be used as a raw material in a nutritional program due to its oil-rich, remarkably high protein content, and richness in omega-6 fatty acids. There is a need to explore eco-friendly defatting methods using the supercritical CO2 extraction method (SFECO2) to preserve this seed’s generic richness and to control the flour–oil ratio in processing formulations. The supercritical fluid extraction method uses temperature, pressure, and CO2 flow rate to determine the best yield and extraction parameters. Defatted egusi flour (DEF) was extracted using three runs. Firstly, at 60 °C, 30 g/h, and 450 bar (DEF1); secondly, at 55 °C, 30 g/h, and 600 bar (DEF2); and thirdly, extraction was performed at 75 °C, 30 g/h and 600 bar (DEF3). Trace and major elements were analysed using Agilent 7700 quadruple ICP-MS (Agilent Technologies Network, Palo Alto, CA, USA) and Thermo Cap 6200 ICP-AES (Thermo Scientific, Waltham, MA, USA), respectively. The sugar was separated on a gas chromatograph coupled to a Mass Selective Detector (MSD). The fundamental pasting property measurements were performed using a Rapid Visco Analyser RVA 4500 Perten instrument Sin 214 31208-45 Australia. Data analysis was conducted using IBM SPSS version 29 software (v. 2022). The protein content of defatted egusi flour ranged from 48.4 for DEF2 to 60.4% w/w for DEF1 and differed significantly, with a rich amino acid high in glutamine ranging from 9.8 to 12.9 g/100 g). DEF2 (512.0 cP) showed the highest peak viscosity and was the most viscous among the samples. Defatted flour with lower temperature and lower pressure (60 °C and 450 bar) offered the best nutritional properties, proffering defatted egusi flour from SFECO2, a novel flour for dietary programs. Full article
(This article belongs to the Special Issue Novel Extraction Methods and Applications)
Show Figures

Figure 1

Back to TopTop